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Production of high-energy
particles

High-energy cosmic particles seem to be ubiquitous in the universe, spanning a wide range of
energies and sources. An obvious way to produce them is to consider a Maxwellian distribution
of velocities, i.e., a Maxwell-Boltzmann distribution, given by

f (~v) d~v =
(

m

2πkBT

) 3
2

exp

(
−
m|~v |2

2kBT

)
d~v , (1.1)

where T the characteristic temperature of the gas of particles of mass m, and kB is the
Boltzmann constant. Here f (~v) is the probability of finding a particle with velocity between
~v and ~v + d3~v .

One could think that eq. 1.11.1 extends to “arbitrarily high velocities”, despite the exponential
suppression for high speeds. However, this distribution is only valid for non-relativistic particles.
Its relativistic counterpart is the Maxwell-Jüttner distribution, given by

f (~v) d~v = 1

4πm2ckBT
K−12

(
mc2

kBT

)
exp

(
γmc2

kBT

)
d~v , (1.2)

with γ = γ(~v) denoting the usual Lorentz factor, and K2 being the modified Bessel function
of the second kind.

From eq. 1.11.1 and eq. 1.21.2, it is possible to perform order-of-magnitude estimates for the
number of particles with energies above a certain threshold. For instance, considering the
peak of this distribution, the temperature required to get thermal particles with energies of
∼ 1020 eV, which is the ballpark for the most energetic ultra-high energy cosmic rays (UHECRs)
ever recorded [11, 22], is T & 1024 K — far beyond the temperatures found in astrophysical
environments. For comparison, the cores of some exploding start can reach temperatures of
up to 1011 K, still far from the required 1019 K. Therefore, there are no viable thermal
mechanisms for producing high-energy particles.

To produce high-energy particles, one must resort to non-thermal mechanisms. It is rea-
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sonable to suppose that either these particles are produced by some higher-energy entity —
the so-called top-down scenarios — or that they are accelerated from lower energies to higher
energies — the bottom-up scenarios. Generally speaking, there is little room for top-down
scenarios to be the sole responsible for the production of the highest-energy particles observed,
given that this class of models often produce copious amounts of photons and neutrinos that
are not detected [33–55]. Therefore, bottom-up mechanisms should dominate most (if not all)
of the high-energy cosmic particle production. They are essentially based on the acceleration
of particles in astrophysical environments, taking particles with initial energies Ei to a final
energy Ef > Ei:

∆E

E
≡
Ef − Ei
Ei

. (1.3)

In bottom-up scenarios, particles start with relatively low energies and are boosted to higher
energies through various astrophysical processes. Two key mechanisms underpin this paradigm:

• electromagnetic acceleration: particles are accelerated by electromagnetic fields in
astrophysical environments;

• gravitational acceleration: acceleration is due to gravitational effects alone.
Electromagnetic acceleration is the standard and most widely accepted class of mechanisms.

It is described in §1.11.1. The more unorthodox class of gravitational acceleration is discussed in
§1.21.2.

1.1 Electromagnetic acceleration

1.1.1 Fermi acceleration: second order

This mechanism was originally proposed by Enrico Fermi in 1949 [66] to explain the acceleration
of cosmic rays in the interstellar medium. It is based on the idea that particles can gain energy
by bouncing off moving magnetic scattering centres. The process is schematically represented
in fig. 1.11.1.

The process can be described as follows. Consider a particle of charge q and mass m
moving with initial velocity ~vi ≡ βic . The particle crosses a magnetised region of space
where the magnetic field is moving with velocity ~V . This turbulent “cloud” can be intuitively
thought of as a collection of magnetic scattering centres, off which charged particles can
scatter, ultimately leading to an energy gain.

1.1.1.1 Energy gain

The energy gain of one “interaction” of the charged particle with the magnetic scattering
centres is given byeq. 1.31.3. The information available, measured in the lab frame, is: the
velocity of the magnetic scattering centres (~V ); the energy (Ei) of the particle initially; the
initial momentum (~pi) of the particle; the angle the momentum vector forms with the moving
scattering centres (θi). Suppose the final energy, as measured in the lab frame is Ef and
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~V

θi

θf

magnetised region
~p i, E

i

~p f
, E

f

Figure 1.1: Schematic representation of the second-order Fermi acceleration process. A mag-
netised region moving with velocity ~V , shown in grey, is crossed by a charged particle, whose
trajectory is represented by the coloured lines. The particle is “scattered” by magnetic scat-
tering centres of sorts, ultimately gaining energy.

the final momentum is ~pf, forming an angle θf with ~V . The problem is that neither the
final momentum nor the final energy are known. In fact, that is the whole point of studying
the acceleration mechanism: to know how much energy the particle gains. Considering an
ensemble of particles, the problem becomes solvable if one additional hypothesis is considered:
that the final scattering angles in the cloud rest frame are isotropically distributed. This is
a reasonable assumption, considering that the medium is turbulent and many scatterings are
expected to occur. The problem would be solvable if some additional information about the
final. Therefore, both frames have to be considered in the calculation, the lab frame, in which
both the particle and the cloud are moving (fig. 1.11.1), and the rest frame of the cloud. The
quantities in the latter frame are indicated by a prime.

Let γ ≡ 1/
√
1− β2 designate the Lorentz factor of the cloud, with β ≡ V/c . The energy

of the incoming particle in the cloud rest frame is given by

E′i = γ
(
Ei − ~V · ~pi

)
(1.4)

In second order Fermi acceleration, it is assumed that the velocity of the magnetic scattering
centres is much smaller than the speed of light (V � c). Moreover, the speed at which
the particle is moving (v) is also presumed to be relativistic, such that Ei ≈ pic . This is a
reasonable assumption, since the magnetic scattering centres are expected to be moving with
velocities of the order of the Alfvén speed, which is typically much smaller than the speed of
light. Therefore, eq. 1.41.4 can be recast into a more convenient form and solved for the initial
energy in the lab frame:

Ei =
E′i

γ
(
1− β cos θi

) . (1.5)

Similarly, the energy of the outgoing particle in the lab frame is related to the energy
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measured in the cloud rest frame through the following expression:

Ef = γE
′
f
(
1 + β cos θ′f

)
. (1.6)

Therefore, the energy gain of the particle in a single interaction is given by

∆E

E
=
Ef − Ei
Ei

=
Ef
Ei
− 1 =

γE′f
(
1 + β cos θ′f

)
E′i

γ
(
1− β cos θi

) − 1 . (1.7)

At this stage, an additional consideration ought to be made. The energy of the particle in
the cloud frame is conserved, such that E′i = E′f. This implies that the energy gain for one
scattering can be written as

∆E

E
= γ2

(
1− β cos θi

)(
1 + β cos θ′f

)
− 1 . (1.8)

Now that the energy gain of a single interaction is known, the next step is to calculate the
average energy gain of the particle after several interactions. This is done by averaging the
energy gain over all possible incoming angles (θi) and all possible final angles (θf), assuming
that the final angle is isotropically distributed in the cloud rest frame, i.e., 〈ν〉 = 0, where
ν ≡ cos θ′f. This condition is equivalent to writing the probability distribution function

dwν ∝ dΩν , (1.9)

where dΩ refers to the solid angle element corresponding to a zenith angle θf = arccos ν.
The initial scattering angle (θi), on the other hand, is not isotropically distributed, but rather
follows a different type of distribution that favours head-on collisions over grazing ones. Let
µ ≡ cos θi. Then this distribution can be written as

dwµ ∝ (1− βµ) dΩν . (1.10)

If many scatterings occurred within the cloud, the initial and final angles are completely
uncorrelated11, such that the joint probability distribution function can be written from eq. ??
and eq. ?? as

d2w
dΩµ dΩν

= A (1− βµ) , (1.11)

where A is a normalisation constant.

The final step now is to average the individual scatterings, whose energy gains are given by
eq. 1.81.8, considering the joint probability distribution function. This is done by integrating over
all possible initial and final angles, weighted by the probability distribution functions (eq. 1.111.11):

1This condition is equivalent to saying that the Jacobian is one, which ensures that the two-dimensional
function is separable.
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〈
∆E

E

〉
=

∫∫
∆E

E

d2w
dΩµ dΩν

dΩµ dΩν∫∫ d2w
dΩµ dΩν

dΩµ dΩν
. (1.12)

Since dΩ = sin θdθdϕ, where θ and ϕ refer to the zenith and azimuthal angles, respectively,
the integrals in eq. 1.121.12 in the ranges −1 ≤ µ ≤ 1 and −1 ≤ ν ≤ 1 yield〈

∆E

E

〉
=

4β2

3(1− β2) . (1.13)

Since V � c , it follows that β2 � 1, thus implying22

〈
∆E

E

〉
'
4

3
β2 . (1.14)

Eq. 1.141.14 is second-order in β, hence the name of the mechanism. This is clearly not an
efficient process, since the average gain per scattering is rather low. However, the key point is
that the process is cumulative, leading to a net energy gain. On the other hand, it is stochastic,
which reduces its efficiency.

The principle underlying this mechanism is the scattering off magnetic centres. But mag-
netic fields do no work. Therefore, “who” is actually doing the acceleration? The answer
is: the electric field. An electric field is simply a magnetic field viewed from another frame.
Therefore, it is reasonable to suppose that an alternative approach to the mechanism, using
electric fields, could lead to the same results. This approach is discussed in §1.1.1.21.1.1.2.

1.1.1.2 Energy gain: derivation from electric fields

1.1.1.3 Spectrum of accelerated particles

Suppose the charged particle from 1.11.1 remains trapped in the accelerating region for a time
τesc, and assume there are no energy losses, only energy gain. Let N(E) be the number of
particles with energies between E and E + dE. Energy conservation implies

d
dE

[
dE
dt N(E)

]
= −

N(E)

τesc
. (1.15)

Since energy is gained and the process is repeated several times, until the particle escapes, a
reasonable ansatz that captures this type of behaviour is

dE
dt =

E

τacc
, (1.16)

2This equation differs by a factor of 2 with respect to some references, such as the classic textbook by
Longair [77]. The reason for this is that here the average is done over all possible angles, whereas in the other
case the derivation assumes a type of “reflection” off the magnetic scattering centres.
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wherein τacc is the acceleration time scale. As a consequence, the equation can be rewritten
as

dN(E)
dE = −

(
1 +

τacc
τesc

)
︸ ︷︷ ︸

≡α

N(E)

E
. (1.17)

Therefore, the spectrum of stochastically Fermi-accelerated particles is given by

N(E) = N0E
−α+1 (1.18)

or, in a more convenient spectral form,

dN
dE ∝ E

−α . (1.19)

Note that eq. 1.151.15, used to derive the spectrum of eq. 1.191.19, is evidently simplified. It
can be identified as a diffusion type of equation in the steady state, with no diffusion and no
interactions. A proper treatment of the problem would involve solving the complete and more
realistic version of this equation. Realistically, τacc = τacc(E) and τesc = τesc(E), due to, e.g.,
momentum diffusion (see §2.2.32.2.3 for details). This can result in modifications of the spectrum
at the highest energies, leading to features such as broken power laws or smooth cutoffs.

1.1.2 Fermi acceleration: first order

First-order Fermi acceleration, commonly known as diffusive shock acceleration (DSA), is a
mechanism that is particularly relevant in the context of astrophysical shocks. It addresses
the major limitations of the second-order mechanism — the geometry — which reduces the
efficiency of the acceleration. If only there were more head-on “collisions”, the energy gain
would be higher... Remarkably, this is actually realised in astrophysical environments in various
types of shocks, described in more detail in §1.1.2.11.1.2.1.

1.1.2.1 Shocks

A shock is a discontinuity in the flow of something (like a fluid or a plasma), in which there
are abrupt changes is some physical properties before and after it. These properties can be, for
example, density, temperature, velocity, and sometimes magnetic field. In astrophysics, shocks
play a fundamental role in a wide variety of phenomena, including the acceleration of cosmic
rays, the heating of the interstellar medium, and the formation of stars and galaxies.

Astrophysical shocks can be collisional or collisionless depending on whether particle col-
lisions or collective electromagnetic fields dominate the shock formation process. In much of
the diffuse astrophysical plasma, Coulomb collisions are relatively infrequent, and collisionless
shocks (mediated by plasma instabilities and electromagnetic fields) are common. Neverthe-
less, many properties of collisionless shocks can be understood using classical fluid models
(e.g., magnetohydrodynamics), supplemented with additional plasma-physics considerations.
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shock front

ρu, Pu, vu, Bu

upstream

ρd, Pd, vd, Bd

downstream

Figure 1.2: A schematic representation of a shock. The front of the shock, assumed to be at
rest, is located at x = 0. The upstream region is labelled ‘u’ and the downstream region is
labelled ‘d’. Relevant quantities are: density (ρ), pressure (P ), temperature (U), velocity (v),
and magnetic field (B).

The Rankine-Hugoniot conditions (a.k.a. jump conditions) provides the foundations for
the study of shocks. They describe how some physical properties change before and after the
shock. They are derived from the integration of conservation laws before and after the shock.

For starters, consider the simple case of a shock at x = 0, stationary in this reference
frame. Consider a steady, one-dimensional shock. The pre-shock (or upstream) region is
labelled ‘u’ and the post-shock (or downstream) region is referred to by the subscript ‘d’. The
Rankine-Hugoniot jump conditions for a perfect (non-magnetised) fluid are:

ρuvu = ρdvd, (1.20)

ρuv
2
u + Pu = ρdv

2
d + Pd, (1.21)

1

2
ρuv

2
u +

γc
γc − 1

Pu =
1

2
ρdv

2
d +

γc
γc − 1

Pd. (1.22)

Here γc represents the ratio between the specific heats of the gas (do not confuse it with the
Lorentz factor), γc = cp/cv , where cp and cv are the specific heats at constant pressure and
volume, respectively. Three conservation laws are used in the derivation of these equations:
mass flux conservation, momentum flux conservation, and energy flux conservation. They are
derived by integrating the conservation laws across the shock interface.

The fluid is compressed and heated after crossing the shock front, such that the downstream
region is denser (ρu < ρu) than the upstream, and both its temperature and pressure also
exceed those in the downstream region (Pd > Pu and Td > Tu). For a non-relativistic
monoatomic gas, γc = 5/3 and the Rankine-Hugoniot conditions lead to the strong shock
jump conditions:

ρd = 4ρu , (1.23)

vu = 4vd . (1.24)
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1.1.2.2 Energy gain

The principle of the mechanism is the same as in the second-order case, such that eq. 1.81.8 still
holds. However, there is a very important difference with respect to the previous case: the
geometry. While eq. 1.121.12 is still valid, since the first-order mechanism deals with shocks, the
weighting functions used for averaging (eq. 1.111.11) has to be corrected.

The first-order mechanism is more efficient than the second, since the averaging procedure
naturally favours head-on collisions. The idea is that particles can gain energy by crossing
a shock front multiple times. These crossings, illustrated in fig. ??, are responsible for the
acceleration of particles to high energies. If the shock front is very large, such that its curva-
ture can be neglected, the angular dependence for one cycle of scattering, which consists in
upstream→downstream→upstream (this will henceforth be called a cycle), will depend only
on the angle of the particle with respect to the shock. Therefore, an expression equivalent to
1.111.11 can be written:

dw ∝ µν dΩµdΩν , (1.25)

which when plugged into eq. 1.121.12 yields
Particles crossing the shock from upstream to downstream are constrained to the range

0 ≤ µ ≤ −1, since they are antiparallel to the shock motion. Particles crossing the shock
from downstream to upstream, on the other hand, are parallel to the shock motion, and are
therefore in the range 0 ≤ ν ≤ 1. Consequently, the integral in eq. 1.121.12 can be written as〈

∆E

E

〉
=
4β + β2

3(β2 − 1) . (1.26)

Since 0 ≤ β ≤ 1, this expression can be approximated to the terms first-order in β, yielding

〈
∆E

E

〉
'
4

3
β . (1.27)

As in the second-order case, the mechanism is called first-order because it depends on the first
power of β.

1.1.2.3 Spectrum of accelerated particles

This mechanism is essentially a pinball machine, where particles bounce back and forth across
the shock front, gaining energy at each crossing. The energy gain per crossing is given by
eq. 1.81.8, and the average energy gain is given by eq. 1.271.27.

Suppose initially N0 particles were injected with energy E0, each having a probability Pesc

of escaping after the acceleration. After k cycles, crossing the shock front down and upstream
again, the charged particle will acquire an energy

Ek = E0

(
1 +
∆E

E

)k
≡ E0ξk . (1.28)
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The probability that the particle will escape at any given cycle is Pesc, such that after the same
k cycles the total number of particles that remain trapped in the accelerating region is

N = N0
(
1 + Pesc

)k
. (1.29)

Therefore, the spectrum of accelerated particles is given by

dN
dE ∝ E

−α , (1.30)

where
α ≡ 1−

ln Pesc
ln ξ

. (1.31)

This is the same power-law form as in the second-order case, but with a possibly different
value of α.

The escape probability can be estimated following Bell [88]. Assuming an isotropic dis-
tribution of particles with number density n, the average flux of particles crossing a surface
is 14nβ̃c , for a characteristic velocity of the particles β̃. This flux does not change for up-
stream → downstream or downstream → upstream.

When the particles are downstream of the shock, they can be trapped in the plasma flow
moving away from the shock with velocity ~u. In In other words, in the downstream rest frame,
the particle distribution remains isotropic, so the number of particles swept away from the
shock front per unit area per unit time is also 14nu. This can be interpreted as the outgoing
particle flux that is lost from the acceleration zone, since those particles no longer cross to the
upstream side.

The ratio of this advected flux (14nu) to the incoming flux (14nβ̃c) indicates the fraction
of particles that do not return to the shock within one single cycle:

1
4nu
1
4nβ̃c

=
u

β̃c
. (1.32)

This fraction is the escape probability, Pesc:

Pesc = 1−
u

β̃c
. (1.33)

For non-relativistic shocks, considering that the particle velocity is relativistic (β̃ → 1), this
implies that α = 2.

Moreover, energy losses in the medium could play an important role in slowing down the
acceleration. And on top of that, one has to consider that the shock is magnetised, such that
the particles will diffuse differently in the upstream and downstream of the shock.

The early theory of DSA dates back to the 1970s. Krymskii [99] was arguably the first to
formally identify the idea that the scattering of charged particles off an expanding shock such
as a supernova remnant would lead to first-order energy gain. Axford, Leer, and Skadron [1010]
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stressed the importance of pitch-angle scattering by magnetic turbulence (see §2.1.22.1.2) in the
acceleration process. This is essentially the current notion of resonant scattering.

Blandford and Ostriker [1111] and Bell [1212] independently developed the theory of DSA in
the context of supernova remnants. In particular, Blandford and Ostriker [1111] linked the theory
of DSA with observations, stressing an observational consequence of DSA: the radio emission
of synchrotron radiation from accelerated electrons in supernova remnants (SNRs), as shown
in fig. 1.31.3. Drury [1313] and subsequently many other authors formalised the theory of DSA
and cast it in a Fokker-Planck framework. This allowed for a more detailed treatment of the
acceleration process, including the effects of energy losses and magnetic turbulence. Around
this time, DSA became the dominant paradigm for the acceleration of charged particles in
astrophysical environments.

Figure 1.3: SN1993J at different epochs. The colour scale indicates the intensity of radio
emission, from lower (colder shades) to higher values (warmer colours). The radio emission
is attributed to synchrotron radiation from accelerated electrons in the shock front. This also
explains why most of the signal is not at the centre. The shock is estimated to be moving
with a velocity of ' 20000 km/s. Figure taken from Bietenholz [1414].

The theory has since been extended to include the effects of the feedback of the acceler-
ated particles onto the environment, which leads to non-linear effects such as magnetic-field
amplification. Nevertheless, the basic idea of DSA remains the same: particles gain energy
by crossing a shock front multiple times, and the spectrum of accelerated particles is a power
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law.

1.1.3 Unipolar induction

1.2 Gravitational acceleration

The general principle of gravitational acceleration is that particles can gain energy by falling
into a gravitational potential well. In particular, there are orbits with negative potential energy,
which can be exploited to accelerate particles. This is the underlying principle of a class of
mechanisms called Penrose processes [1515]

The principle is usually applied to rotating black holes. The general idea is simple. First,
a particle falls into the ergosphere of a black hole (BH). Then, the particle splits into two
fragments, one of which follows an orbit of negative potential energy. This allows the other
particle to escape the ergosphere with a higher energy than the original particle.

The same process can occur if two particles collide inside the ergosphere — the collisional
Penrose process.

1.3 Conditions for acceleration

A cosmic accelerator must satisfy a few conditions to be able to produce high-energy particles.
There are at least three necessary conditions that must be met for particles to be accelerated
to high energies:

• energy gain;
• confinement;
• power.
The first is a general criterion that must be satisfied regardless of how particles are accel-

erated is that the rate at which the particle gains energy must exceed the energy loss rate,
which is to say

dE
dt

∣∣∣∣
gain

>
dE
dt

∣∣∣∣
loss

. (1.34)

This obvious condition also determines the efficiency of the acceleration process and its time
scale.

The other criteria are described in §1.3.11.3.1 and §1.3.21.3.2. Some authors (e.g. [1616]) consider
additional criteria. Nevertheless, the three mentioned here are necessary (but not sufficient)
conditions.

1.3.1 The Hillas criterion

A geometrical criterion that constraints the electromagnetic acceleration of particles is the
so-called Hillas criterion [1717]. This necessary condition for acceleration relates the size of the
region (Ro) to the Larmor radius of the particle (RL). If the region is too small, particles will

15



Production of high-energy particles

escape before being accelerated. Therefore, the condition is Ro & RL:

Ro &
E

|q|Bo
, (1.35)

where E is the energy of the particle, and Bo the magnetic field strength in the region.
The maximum energy that can be attained by a charged particle is:

Emax '
q

e
βRoBo , (1.36)

where β ≡ v/c refers to the velocity of the particle.
This criterion is illustrated in fig. 1.41.4.
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Figure 1.4: The Hillas plot, illustrating the parameter space of magnetic field strength (vertical
axis) and confinement size of the region (horizontal axis). Above the lines which represent dif-
ferent reference energies, particles are no longer magnetically confined to the region, assuming
Bohm diffusion. Figure taken from [1818].

1.3.2 The Hillas-Lovelace condition

The third criterion is the Hillas-Lovelace condition, which is a generalisation of the Hillas
criterion. It states the (rather obvious) fact that there must be enough power to accelerate
particles to high energies. If this energy is magnetically-sourced, the resulting power constraint
is [1717, 1919]:

LB,min & βcuBR
2
o , (1.37)

with uB denoting the magnetic energy density.
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1.4 Exercises

1.1 Fermi acceleration is usually classified into two main categories: first-order and second-
order acceleration.
(a) Explain the main differences between Fermi 1st order and Fermi 2nd order acceleration in
terms of:

• physical mechanism;
• energy gain per interaction;
• the efficiency of the acceleration process.

(b) Why is 1st-order Fermi acceleration (shock acceleration) generally considered more efficient
than the 2nd-order mechanism, in astrophysical contexts?

1.2 In 2nd-order Fermi acceleration, the energy gain per scattering is given by:

∆E

E
'
4

3
β2 ,

where β = v/c is the velocity of the scattering centre in units of the speed of light. Suppose
the magnetic field in the accelerating region has a coherence length of LB, and assume that
particles are moving at ultra-relativistic speeds.
Write down an expression for the number of scatterings (Nscat) required for a particle to reach
an energy of E, starting from an initial energy of E0.

1.3 In the Fermi 1st-order acceleration mechanism, particles are scattered back and forth
across a shock front. Suppose a particle of energy E0 is scattered k times by the shock front.
(a) Compute the energy of the particle after k scatterings.
(b) Let Pesc be the probability that a particle will escape the accelerating region after k
scatterings. Show that the number of particles that remain trapped is given by

N = N0
(
1 + Pesc

)k
.

(c) Show that the spectrum of accelerated particles in this case forms a power-law distribution.

1.4 Consider a plasma of fully ionised hydrogen (i.e., a monatomic gas) with negligible
internal thermal energy upstream of a shock. Make the oversimplification that the unshocked
gas is cold and pressureless. Derive the strong shock jump conditions:

ρd = 4ρu ,

vu = 4vd .

1.5 The maximum energy a particle can reach in Fermi acceleration is determined by
confinement within the acceleration region. The Hillas criterion provides an estimate for this

17



Production of high-energy particles

maximal energy (Emax) that can be reached by a particle of charge q (with q 6= 0) in a given
astrophysical environment.
(a) Derive the Hillas criterion for the maximum energy a particle can reach:

Emax ≈ qBoRo ,

where Ro is the size of the acceleration region, and Bo is the magnetic field strength. Explain
each step behind the derivation.
(b) Suppose a hydrogen nucleus (or proton) can be accelerated up to an energy of 3 PeV by
a given astrophysical object. What is the maximal energy a helium nucleus can reach in the
same environment?
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Transport of charged
particles in magnetic fields

The equation of motion of a single particle of charge q and mass m travelling with velocity ~v
subject to a magnetic field ~B can be obtained starting off with the Lorentz force equation:

d~p
dt = m

d~v
dt = q~v ×

~B(~x, t) + q ~E(~x, t) . (2.1)

where ~p = γm~v is the momentum of the particle, and γ =
(
1− v2/c2

)−1/2 refers to the
Lorentz factor. Here ~E denotes the electric field. It is convenient to write equation 2.12.1 as

d~v
dt =

q

m
~v × ~B(~x, t) +

q

m
~E(~x, t) , (2.2)

with c denoting the speed of light.
For starters, consider the case of homogeneous magnetic and electric fields: |~E| = ~E0 and

|~B| = ~B0. Eq. 2.22.2 can be more easily solved by introducing the transformation

~v ′ = ~v −
1

B2
~E × ~B , (2.3)

and by noting that ~E · ~B = 0 is a relativistic invariant11. The term that contains ~E × ~B causes
the motion of the particle in a direction perpendicular to both the electric and the magnetic
fields. This is the drift velocity:

~vd =
~E × ~B

B2
. (2.4)

Eq. 2.22.2 is then simply given by

d~v ′
dt =

q

m
~v ′ × ~B . (2.5)

This transformation can also be understood as a choice of a reference frame wherein the
1This statement is factually correct for a single particle moving in vacuum. There are systems in which

~E · ~B 6= 0. These usually involve media and materials that are neither ideal conductors nor insulators.
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electric field is null (frame S ′), instead of the original frame S in which it is non-zero.

Exercise. Show that there is a frame (S ′) in which the electric field is zero. Does
such a frame always exist? What happens to the drift velocity in this frame?

Having established the equivalence of the equations of motion 2.22.2 and 2.182.18, it is clear
that much can be learned in an easier fashion if the frame S ′ is chosen, such that the electric
field is neglected altogether. Therefore, in what follows, this will be taken into account.
Nevertheless, to keep the notation concise, the prime symbols will be dropped for simplicity.
This is completely equivalent to the case ~E = 0. In fact, this is an appropriate choice because
in many astrophysical environments like the ones of interest here (e.g., intergalactic medium,
intracluster medium, etc), the pervading plasmas have high conductivity, such that there are
no large-scale electric fields (~E ≈ 0).

2.1 Transport of a single particle

2.1.1 Homogeneous magnetic field

For simplicity, take a coordinate system wherein the magnetic field is oriented along the z
axis, i.e., ~B = B0ẑ . The velocity component of ~v in the z direction is completely arbitrary
(but constant) and irrelevant for propagation because of the vector product ~v × ~B. Thus, the
solution can be obtained by solving a system of two differential equations of first order in the
velocity: 

dvx
dt =

q

mc
B0vy ≡ ωvy

dvy
dt = −

q

mc
B0vx ≡ −ωvx

dvz
dt = 0 .

(2.6)

To simplify the notation, the gyrofrequency ω ≡ |q|B0/mc is defined. In addition, the
parallel and the perpedincular components of the velocity with respect to the magnetic field
are introduced: ~v‖(t) ≡ vz(t)ẑ and ~v⊥(t) ≡ vx(t)x̂ + vy (t)ŷ .

In general, ~v(t) = ~v‖(t)+~v⊥(t), but in this particular case these quantities are all constant
(|~v‖ + ~v⊥| = |~v | = constant). A useful concept that can be introduced at this stage is the
pitch angle, φp, which links the parallel and perpendicular components of the velocity as
follows:

tanφp(t) =
v⊥(t)

v‖(t)
. (2.7)

For a simple homogeneous magnetic field like ~B = B0ẑ , the pitch angle is constant. This
follows from the fact that dv‖

dt = 0 implies dv⊥
dt = 0 at all times.
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The solution of this system of differential equations is immediate:

vx(t) = v⊥ cos(φ− ωt) , (2.8)

vy (t) = v⊥ sin(φ− ωt) , (2.9)

vz(t) = v‖ , (2.10)

where φ is a constant indicating the initial phase of the system. To obtain the time-dependence
of the coordinates, these equations should be integrated, yielding

x(t) = x(0) +
v⊥
ω
sinφ−

v⊥
ω
sin(φ− ωt) , (2.11)

y(t) = y(0)−
v⊥
ω
cosφ+

v⊥
ω
cos(φ− ωt) , (2.12)

z(t) = z(0) + v‖t . (2.13)

Note that
v2x (t) + v

2
y (t) = constant , (2.14)

which is a circular motion in the xy plane around the point

(xcentre, ycentre) =
(
x(0) +

v⊥
ω
sinφ, y(0)−

v⊥
ω
cosφ

)
. (2.15)

It is possible to identify a characteristic quantity with dimensions of length related to the
gyrofrequency. This is the Larmor radius (or gyroradius), given by

RL =
v⊥
ω
. (2.16)

This general definition can be rewritten in a more convenient form in terms of the energy
E = γmc2 of the particle:

RL =
E

|q|cB0
. (2.17)

Note that this approximation is only valid for pitch angles that satisfy tanφp ∼ 0.

2.1.2 Inhomogeneous magnetic field

Consider now a perturbation δ ~B to the simple magnetic field from §2.1.12.1.1, which can be in an
arbitrary direction. The total field now reads ~B = ~B0 + δ ~B = B0ẑ + δ ~B. This can now be
plugged into the general equation of motion (eq. 2.12.1):

d~v
dt =

qc2

E
~v × ~B =

ω

B0
~v × ~B0 +

ω

B0
~v × δ ~B . (2.18)

The solution for first term on the right-hand side of the last equality is known (eq. 2.102.10 and
eq. 2.132.13).
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To obtain the full solution, one must first write down the system of differential equations:

dvx
dt = ω0

(
vy
δBz
B0
− vz

δBy
B0

)
+ ω0vy ,

dvy
dt = ω0

(
vz
δBx
B0
− vx

δBz
B0

)
− ω0vx ,

dvz
dt = ω0

(
vx
δBy
B0
− vy

δBx
B0

)
,

(2.19)

where ω0 is what was formerly ω, this is, the gyrofrequency corresponding to the unperturbed
magnetic field. Note that each i -th component of the perturbations are assumed to vary slowly
with time, such that dδBi

dt ∼ 0.

The differential equation 2.192.19 can be solved using variation of parameters. For simplicity,
let ai(t) be the terms within parentheses times ω0. The ansatz is the following:

vx(t) = g1(t) cosω0t + g2(t) sinω0t , (2.20)

vy (t) = g2(t) cosω0t − g1(t) sinω0t , (2.21)

where g1(t) and g2(t) are two functions to be determined. By inspection, it is possible to
show that

g1(t) =

t∫
0

dt ′
[
ay (t

′) cosω0t
′ − ax(t ′) sinω0t ′

]
, (2.22)

g2(t) =

t∫
0

dt ′
[
ay (t

′) sinω0t
′ + ax(t

′) cosω0t
′] . (2.23)

After some tedious integrations (by parts), the velocities are obtained:

vx(t) = vx(0) cosω0t + vy (0) sinω0t + cosω0t

t∫
0

dt ′
[
ay (t

′) cosω0t
′ − ax(t ′) sinω0t ′

]

+sinω0t

t∫
0

dt ′
[
ay (t

′) sinω0t
′ + ax(t

′) cosω0t
′] ,
(2.24)

and

vy (t) = vy (0) cosω0t − vx(0) sinω0t + cosω0t
t∫
0

dt ′
[
ay (t

′) sinω0t
′ + ax(t

′) cosω0t
′]

− sinω0t
t∫
0

dt ′
[
ay (t

′) cosω0t
′ − ax(t ′) sinω0t ′

]
.

(2.25)

22



Transport of charged particles in magnetic fields

The guiding centre follows the magnetic-field lines. The motion is a superposition of
two components, one that rotates in the xy plane, and another that moves stochastically as
determined by the perturbing field. A better understanding of this motion can be grasped by
considering an arbitrary instant in time (t) and integrating the velocities over one period:

ui(t) =
1

T

t+T∫
t

dt ′ vi(t ′) , (2.26)

where T = 2π/ω0 is the period of the particle. It follows then that

ux(t) ≈
1

ω0
ax(t) = vz

δBx
B0
− vx

δBz
B0

,

uy (t) ≈
−1
ω0
ay (t) = vz

δBy
B0
− vy

δBz
B0

,

uz(t) ≡ vz(t) .

(2.27)

To solve eq. 2.272.27, it is necessary to know the perturbation δ ~B. This is a difficult task, as
it is not possible to know the exact form. However, it is possible to obtain the average motion
of a collection of particles, as will be shown in the next section.

2.2 Transport of an ensemble particles in magnetic fields

In §2.1.12.1.1 the equation of motion for a particle in a homogeneous magnetic field were derived.
Now In §2.1.22.1.2 a perturbation was added to the homogenous field to obtain a more general set
of equations of motion. What happens if the magnetic field is inhomogeneous? To answer
this question, it is useful to understand analogous processes like Brownian motion. In essence,
the underlying mathematical formalism involves calculating random walks.

2.2.1 Random walks

In one dimension a random walker can move in either direction, left or right. In the isotropic
case, both probabilities are the same, i.e., P(left) = P(right). Suppose a displacement of n
steps of length λ, where λ is much smaller than the length scale of the system. The position
of the particle in this case is

x(n) =

n∑
i=1

si , (2.28)

where si = ±λ, which means that the walker can move either left or right. The average
displacement is

〈x(n)〉 =

〈
n∑
i=1

si

〉
≈ 0 . (2.29)
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The mean square is 〈
x2(n)

〉
=

〈
n∑
i=1

s2i

〉
= λ2n . (2.30)

After n steps, the walker will have displaced k steps, where k = nl − nr is the difference
between the number of steps to the left (nl) and the number of steps to the right (nr ), with
n = nl + nr . The probability of finding any given value of k for a fixed n is

P(k) =
number of (nl , nr ) arrangements
total number of arrangements .

This yields:

P(k) =

n!

nr !nl !

2n
=

n!

2n
(
n+k
2

)
!
(
n−k
2

)
!
. (2.31)

Using Stirling’s approximation (log(y !) = y ln y − y) the probability can be rewritten as

ln P(k) = n ln n −
1

2
[(n + k) ln(n + k) + (n − k) ln(n − k)] ≈ −

k2

2n
, (2.32)

which leads to
P(k) = exp

(
−
k2

2n

)
. (2.33)

To obtain the results for the continuous case, recall that x = kλ. Therefore, replacing k
in eq. 2.332.33, the probability becomes

P(x) ∝ exp
(
−

x2

2nλ2

)
. (2.34)

The proportionality symbol is justified because there is no assurance that the distribution
is an actual probability distribution function, which ought to be normalised to 1. A simple
integration then gives the (normalised) probability distribution function for an isotropic random
walk with characteristic length of λ after n steps:

P(x) =
1√
2πnλ2

exp

(
−

x2

2nλ2

)
. (2.35)

To generalise the result from eq. 2.352.35 to three dimensions, note that the coordinates x ,
y , and z are completely independent, such that the probability for the 3D case is simply the
product P(x)P(y)P(z):

P(x, y , z) =
1

(2πnλ2)
3
2

exp

(
−
x2 + y2 + z2

2nλ2

)
. (2.36)
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Assuming spherical symmetry, this becomes:

P(r) =
4πr2

(2πnλ2)
3
2

exp

(
−

r2

2nλ2

)
. (2.37)

Physically, what is being modelled is the motion of a particle in an inhomogenous magnetic
field, which can be viewed as a collection of regions in space (domains) wherein the field is
approximately homogeneous. Each time a charged particle crosses one of these domains it will
change directions, in a way similar to what a random walker does. For this reason, it is useful
to quantify how often a particle crosses (or loosely speaking, “collides with”) these regions.
After a time t, the number n of interactions between the particle and the magnetic domains
is n = Γt, where Γ denotes the rate at which these interactions occur. Plugging this into
eq. 2.372.37 results in

P(r) =
4πr2

(2πnλ2)
3
2

exp

(
−

r2

2Γλ2t

)
. (2.38)

An essential concept can now be introduced relating the motion of a particle with the
frequency of interactions with the magnetic domains. The diffusion coefficient is defined as

D ≡
1

2
Γλ2 . (2.39)

Now the probability from eq. 2.382.38 becomes

P(r) =
4πr2

(4πDt)
3
2

exp

(
−
r2

4Dt

)
. (2.40)

The mean displacement can be shown to be null:

〈r〉 =
∞∫
0

P(r)r dr = 0 . (2.41)

Similarly, the mean of the squared displacements can be calculated:

〈
r2
〉
=

∞∫
0

P(r)r2 dr = 6Dt . (2.42)

Note that for each individual coordinate x , y , and z , the corresponding mean squared dis-
placement is, on average:

〈
∆x2

〉
=
〈
∆y2

〉
=
〈
∆z2

〉
=
1

3

〈
r2
〉
.

This is true in case of isotropy, which guarantees that all coordinates are in equal footing, and
in case of homogeneity, which ensures that x(t)→ x(t)− x(0) ≡ ∆x(t) (and similarly for y
and z).
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An important result about diffusion is delivered by eq. 2.422.42:
√
〈r2〉 ∝

√
t. If more realistic

scenarios were considered, the general expression

〈
r2
〉
∝ tχ (2.43)

would be obtained. Here the parameter χ determines the type of propagation. In this derivation
using random walks the process was assumed to be Markovian and χ = 1. For a homogeneous
magnetic field (§2.1.12.1.1) or a perturbed field (§2.1.22.1.2), the regime of propagation is ballistic,
with χ ≥ 2. This will become more clear when studying the propagation of an ensemble of
particles. The other regimes of propagation are sub-diffusion (0 < χ < 1) and superdiffusion
(1 < χ < 2).

This simple derivation of the diffusion of how a single particle diffuses in an inhomoge-
neous magnetic fields is instructive to understand some fundamental concepts, the diffusion
coefficient being the most important of them. It encompasses the notion of coherence length
through the size of the contiguous magnetic domain (λ), and the rate at which particles meet
these domains (Γ) along the particle’s trajectory, which is directly related to its velocity and
Larmor radius. Naturally, this is simply a toy model for diffusion and the derivation is not
rigorous, in addition to containing many simplifying assumptions mentioned throughout the
text. For instance, firstly, diffusion can be anisotropic. Secondly, the magnetic domains might
not be a good description for what happens in reality, their sizes may vary, and there might
be correlations between them. Finally, this whole treatment was applied to a single particle,
which is actually meaningless, given the statistical nature of the problem. It is, thus, important
to realise that the perturbation is stochastic. So it is advantageous to work with an ensemble
of particles, collectively, to understand the statistical properties of their propagation.

In §2.1.22.1.2 a perturbation was added to the magnetic field, and a set of equations (eq. 2.192.19)
was obtained, but it was not directly solved because δ ~B may be a function of position (~x)
and time (t). They do, however, serve as bases for the subsequent discussions. In particular,
the relationship between the mean squared displacements (

〈
∆x2

〉
,
〈
∆y2

〉
, and

〈
∆z2

〉
; see

eq. 2.422.42) and time through the diffusion coefficient will be used henceforth.

At this stage, a new concept comes in handy: the running diffusion coefficient, defined
as:

dxx(t) =
1

2

d
dt

〈
(∆x(t))2

〉
. (2.44)

Here the coordinate ‘x ’ is simply a placeholder for all cartesian coordinates. It is “running”
because it is a function of time. Another definition is also found in the literature, and here it
will be denoted by Dxx to avoid confusion:

Dxx(t) =

〈
(∆x(t))2

〉
2∆t

. (2.45)

Taking the limit of infinite time, the diffusion coefficiente κxx – which is a constant –
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corresponding to the running diffusion coefficient (dxx ) is obtained:

κxx = lim
t→∞

dxx(t) . (2.46)

Nevertheless, it should be noted that this quantity is only mathematically defined, as in reality
time cannot be infinitely large. It suffices to employ dxx to describe the system whenever
t � td , i.e., when diffusive behaviour was reached after a time scale td .

These considerations show the importance of an statistical treatment of the relevant quan-
tities, in particular the spatial coordinates. A useful mathematical toolkit to assist with these
calculations is the Taylor-Green-Kubo (TGK) approach [2020–2222].

2.2.2 The Fokker-Planck equation

The Fokker-Planck equation was first introduced by Fokker [2323] and Planck [2424] in the context
of statistical mechanics, and later re-derived by Kolmogorov [2525]. It was motivated by the
need to describe the transport of an ensemble of particles subject to drag and stochastic
forces, in particular the changes in the probability density functions of the particle velocity. It
can be understood as a phase-space equation that describes (statistically) the spatio-temporal
evolution of a collection of particles. It is calculated in the phase space, including, therefore,
spatial coordinates (~x), time (t), and momentum variations (~p). If the mass is constant, the
variation of the momentum vector translates into the variation of the velocity vector (~v). Given
the symmetry of the problem, these vectors wobble around the guiding centre with a given
pitch angle. Therefore, one can simplify the treatment by replacing the momentum vectors
with the pitch angle (φp) or its cosine (µ ≡ cosφp).

The equation reads:

∂f

∂t
+ vµ

∂f

∂z
=

∂

∂µ

(
Dµµ

∂f

∂µ

)
+
∂

∂x

(
Dxx

∂f

∂x
+Dxy

∂f

∂y

)
+
∂

∂y

(
Dyx

∂f

∂x
+Dyy

∂f

∂y

)
,

(2.47)
where the last two terms with partial derivatives in x and y are zero in the absence of electric
fields, as is the case. The Fokker-Planck coefficients (Dab and Dµµ) describe the general
relations

Dab =

∞∫
0

dt
〈
∂a(t)

∂t

∂b(t)

∂t

〉
(2.48)

and

Dµµ =

∞∫
0

dt
〈
∂µ(t)

∂t

∂µ(0)

∂t

〉
, (2.49)

for any generalised coordinates a and b. The integral can be readily identified as Kubo’s
equation [2222]. Here, these coordinates can be the usual spatial coordinates (x , y , z) or the
pitch angle22 (µ). Note that in many cases momentum is one of these generalised coordinates,

2Formally, the pitch angle is φp, but for simplicity µ ≡ cosφp will also be used to refer to the pitch angle,
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with their corresponding terms being part of the Fokker-Planck equation (eq. 2.472.47).
A logical first attempt to tackle this problem would divide it into two parts, one dealing

with the transport parallel to the magnetic field (~B0), and another one perpendicular to it.
Parallel transport is the simplest to solve, as it can be reduced to the treatment of pitch-angle
scattering of charged particles streaming along the magnetic field. The perpendicular transport
is more complex, as it involves the treatment of the spatial diffusion of the particles, in addition
to scattering. The main framework for treating both parallel and perpendicular transport is
the so-called quasi-linear theory (QLT), described in the next section.

2.2.3 Quasi-linear theory

QLT is a kind of first-order perturbation theory analogous to the Born approximation in (quan-
tum) scattering theory. It is applicable if the perturbations are small, i.e., if

δB

B
� 1 and cδ|E|

B
� 1 ,

(the latter only if small-scale electric fields are present), and if the turbulence is fully developed,
which means that the perturbed field spans many scales.

QLT is the most widely-used approach for specifying the diffusion coefficient and relevant
transport parameters such as the mean free paths parallel and perpendicular to the mean
magnetic fields. It has been shown that QLT leads to infinite mean free paths in the case of
perpendicular transport when the pitch angle is 90◦. It is also not valid in the case of particle
transport in a two-dimensional turbulence. To solve these problems, a non-linear guiding centre
theory has been proposed [2626], in order to describe the perpendicular diffusion. Recently the
authors of ref. [2727] employed the description of spatial separation of magnetic field lines in
magnetohydrodynamical turbulence, in order to quantify the divergence of the magnetic field
on scales smaller than the injection scale of turbulence; they have shown that this divergence
may induce superdiffusion of charged particles perpendicularly to the mean magnetic field. The
implications of this superdiffusion to cosmic ray (CR) propagation and acceleration, as well
as the corresponding non-thermal emission, must still be explored in depth in astrophysical
environments.

The full transportm as described within the framework of QLT depends on the calculation
of diffusion coefficients (κi). More generally, one can define the diffusion tensor (κ~

~

):

κ~

~

=

κxx κxy κxz

κyx κyy κyz

κzx κzy κzz

 =
 κ⊥ κas 0

−κas κ⊥ 0

0 0 κ‖

 , (2.50)

with κas representing antisymmetric off-diagonal elements. Here, κas = 0 for simplicity, but
it can be non-zero if, for example, there are some types of drift. Note that the diffusion tensor
(κ~

~

) if diagonal for axisymmetric turbulence (κxy = κyx = κas = 0). Moreover, if diffusion

interchangeably. The meaning can be implied from the context.
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is purely spatial, i.e., in the absence of momentum diffusion33, as in the case of the purely
magnetic fluctuations (δ ~E = 0) considered here.

For instance, it is possible to show that the Fokker-Planck equation (eq. 2.472.47) for the
parallel transport, generalised to three dimensions, leads to:

∂f(~x, t)

∂t
=

∑
a={x,y ,z}

κaa
∂2f(~x, t)

∂xa2
, (2.51)

whose solution, assuming that all particles were concentrated in a single point space at time
t = 0, is

f(~x, t) =
1

(2π)3/2
1√
8t3

∏
a={x,y ,z}

1
√
κaa
exp

(
−

x2a
4tκaa

)
. (2.52)

This can be promptly recognised as a Gaussian with

〈
x2a
〉
= 2tκaa , (2.53)

which implies remarkable similarities with the random walk results from §2.2.12.2.1.

QLT treats particle transport in the six-dimensional phase space. The pitch angle (or
better, its cosine, µ ≡ cosφp) plays a central role in this treatment, through the Fokker-
Planck coefficients. In fact, in addition to the spatial Fokker-Planck coefficients, given by

Dab(µ) = lim
t→∞

〈∆xaa〉
2t

=

∞∫
0

dt 〈ua(t)ub(0)〉 (2.54)

(for the perpendicular components), there are also the pitch-angle Fokker-Planck coefficients:

Dµµ(µ) = lim
t→∞

〈∆µ〉
2t
=

∞∫
0

dt
〈
∂µ(t)

∂t

∂µ(0)

∂t

〉
. (2.55)

For parallel transport, the corresponding diffusion coefficient (κ‖ = κzz ) is:

κzz = dzz(t) =
1

2

d
〈
z2
〉

dt . (2.56)

Similarly, the perpendicular diffusion coefficient (κ⊥ = κxx = κyy ) can be obtained through
the Fokker-Planck coefficients as:

κab =
1

2

+1∫
−1

dµDab(µ) , (2.57)

where a, b = {x, y}.
3Momentum diffusion is a phenomenon analogous to spatial diffusion, but in momentum space. In essence,

the momenta of particles composing an ensemble changes due to the action of, for instance, external pressure
or shear stress.
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2.3 Diffusion of cosmic rays in the Galaxy

Now that the basic concepts of cosmic-ray transport have been introduced, it is possible to
delve into the specifics of the propagation of CRs in the Galaxy. The main focus will be on the
transport of CRs in the Milky Way, but the same principles can be applied to other astrophysical
environments. First, a transport equation will be “derived”, to describe the evolution of the
number density of charged particles in space, time, and momentum. This is done in §2.3.12.3.1
Then this formalism will be applied to the classic leaky box problem, in §2.3.22.3.2.

2.3.1 The transport equation

To study how charged particles like CRs move in the Galaxy, a good starting point is the
assumption that the total number of particles (N) is conserved, which is mathematically
expressed through the continuity equation:

∂n(~x, t)

∂t
+ ~∇ · ~J(~x, t) = 0 , (2.58)

where ~J(~x, t) is the cosmic-ray current at position ~x and instant t, and n ≡ N/V is the particle
density in a volume V . By definition, the gradient of the particle density and the current are
related through the diffusion coefficient (or better, diffusion tensor, D~

~

(~x, t) = D~

~

(~x)):

~J(~x, t) = −D~

~

(~x) · ~∇n(~x, t) . (2.59)

By plugging this into eq. 2.582.58, one arrives at:

∂n(~x, t)

∂t
= ~∇ ·

[
D~

~

(~x) · ~∇n(~x, t)
]
. (2.60)

Eq. 2.602.60 is only true in the stationary case. There are velocity fields associated with the bulk
motion of an ensemble of particles. If the fluid is moving with velocity ~u (~x), the time derivative
is a convective derivative. Therefore, the following ad-hoc replacement has to be made:

∂

∂t
→

∂

∂t
+ ~u(~x) · ~∇ ≡

D

Dt
. (2.61)

The full justification for the use of the convection operator will not be given here, but it is
described in several textbooks on fluid dynamics. For now, it suffices to adopt the D

Dt
simply

as a representation for the convective derivative.
Particles with different velocities (or conversely, momenta) may behave differently, such

that at this stage it is advantageous to make this explicit by doing n(~x, t)→ n(~p, ~x, t). If this
is put into eq. 2.602.60, one obtains:

Dn(~p, ~x, t)

Dt
− ~∇ ·

[
D~

~

(~x)~∇n(~p, ~x, t)
]
= 0 . (2.62)
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Equation 2.622.62 captures how a fluid of charged particles with density n(~p, ~x, t) is trans-
ported. The diffusion tensor (D~

~

(~x)) encodes properties of the intervening magnetic fields.
The bulk motion is determined by the fluid velocity ~u. If this process is describing, for in-
stance, cosmic-ray transport in the Galaxy, it is natural to ask how did these particles came to
compose the fluid. If there is a source of particles, there is a function Qa(~p, ~x, t) describing
the injection rate of particles of a given species a per unit time per unit volume. Such terms
will be added to the right-hand side of the equations. Now eq. 2.622.62 becomes

Dna(~p, ~x, t)

Dt
− ~∇ ·

[
D~

~

(~x)~∇na(~p, ~x, t)
]
= Qa(~p, ~x, t) . (2.63)

Note that now the transport equation is described for individual particle species (e.g., different
types of nuclei or charged leptons). The function Qa(~p, ~x, t) essentially corresponds to the
astrophysical sources of particles of type a.

Observing the existence of a source term in eq. 2.632.63, it is reasonable to ask whether other
source or sinking terms should also be considered. Physically, any type of process that implies
non-conservation of the particle number (for a given particle species), like decays and spallation
processes, can be a sinking process. Decays of particles of type a decrease the particle density
by

1

γτa
,

where γ is the Lorentz factor of the particle, and τa the lifetime of particle a. Similarly,
collisions with gas composed of particles of type b decreases the density of particles of type a
by ∑

b

vnb(~p, ~x, t)σab(~p, ~pb) =
∑
b

v

λab(~p, ~pb)
=
∑
b

1

τab
,

wherein σab is the cross section for the collision of particles a and b, v is its velocity, λab is
the mean free path for collisions between a and b, and τab the collision rate corresponding to
this mean free path. For CR transport in the Galaxy, the relevant targets for interactions are
essentially just hydrogen and, to a much smaller extent, helium. The two terms due to decay
and collisions will be summed and represented by ξa,

ξa(~p, ~x, t) =

[
1

γτa
+
∑
b

1

τab

]
na(~p, ~x, t) . (2.64)

When a particle of a given species a changes into a′, the corresponding equations for a′

should be corrected accordingly. Likewise, there is a probability of a nuclear decay from a′ to
result in a. Therefore, there are other two source-like terms that should be added to the right-
hand side of eq. 2.632.63. Let χa denote the sum of these terms. They account the differential
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cross section for collisions a and b to generate a′, such that χa can be written as:

χa(~p, ~x, t) =

∑
a′

∑
b

vnb(~p, ~x, t)

∫
dp′ dσa

′b→a (~p, ~p
′)

dp︸ ︷︷ ︸
σa′b→a

+
ηa′→a
γ′τa′

 na′(~p, ~x, t) , (2.65)

wherein pk = |~pk |, γ′ denotes the Lorentz factor of particle species a′, and ηa′→a designates
the branching ratio of the decay channel a′ → a + other particles. The information relevant
for computing ξa and χa, namely interactions and decays, are described in detail in §33.

Therefore, eq. 2.632.63 becomes:

Dna(~p, ~x, t)

Dt
− ~∇ ·

[
D~

~

(~x)~∇na(~p, ~x, t)
]
= Qa(~p, ~x, t)− ξa(~p, ~x, t) + χa(~p, ~x, t) . (2.66)

Note the signs of ξa and χa, which indicate disappearance and appearance of particles of
species a, respectively.

Eq. 2.662.66 is known as the diffusion-convection equation. The derivation as outlined above
was based on ref. [2828]. Similarly treatment was adopted in, e.g., refs. [2929–3131]. Note that in
this derivation the time and momentum dependence of the diffusion tensor were omitted. This
is because the inclusion of more complicated terms like momentum diffusion would defeat the
purpose of this non-rigorous yet instructive derivation.

2.3.2 The leaky box model

A useful toy model for understanding the propagation of CRs in the Galaxy is the so-called leaky
box model [3232]. In this model, CRs are assumed to leave the Milky Way after a characteristic
escape time scale τesc. The Galaxy is assumed to be a cylinder of height 2h and radius rd.
These values are known to be h ' 1 kpc and rd ≈ 15 kpc []. Therefore, because the Galaxy
is very thin, it is much more likely that particles will escape upwards or downwards, such that
the most important length scale is h, to first approximation. This justifies the one-dimensional
treatment put forth in this section.

The escape rate of relativistic CRs from the Galaxy is τ−1esc � ch, which ensures that
this treatment is physically sensible, though not accurate. The goal is to obtain a solution for
eq. 2.662.66 using this toy model. The simplest version of this models presumes the particle density
depends only on the absolute value of the momentum, such that na(~p, ~x, ~t) = na(~p) = na(p).

The left-hand side of eq. 2.662.66 is composed of the convective derivative and the diffusion-
related terms and can be simplified as follows:

Dna
Dt
− ~∇ ·

[
D~

~

~∇na
]
=

∂na
∂t︸︷︷︸

=0 (steady state)

+ ~u · ~∇na − ~∇ ·
[
D~

~

~∇na
]︸ ︷︷ ︸

≈
na
τesc

.

An energy-dependent source term Qa is considered. The other terms on the right-hand–
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side of eq. 2.662.66 are simplified when the assumption that the gas permeating the Galaxy is
made of only hydrogen44 is adopted. They reduce to

ξa =
1

γτa
+
1

τa,H
=
1

γτa
+
vnHσa
λa,H

, (2.67)

where the notation λa,H is used to emphasise the interaction of particles of type a with the
Galactic gas, and

χa =
∑
a′

vnHσa′H→a na′ +
∑
a′

ηa′→a
γ′τa′

na′ . (2.68)

Assembling all the terms, the diffusion equation for the leaky box model can be written as:

na(p)

τesc(p)
= Qa(p)− ξa(p) + χa(p) . (2.69)

The contribution of other nuclear species decaying into a (the ξa term of eq. 2.662.66) is here
neglected. It is convenient to rewrite this equation in terms of the energy (E) instead of the
momentum (p), which is trivial.

Nowadays, there are several improvements over the original (yet remarkably useful) leaky
box model [3333].

2.3.3 The boron-to-carbon (B/C) ratio

An important astrophysical observable related to Galactic cosmic rays is the boron-to-carbon
ratio (B/C ratio). It is a key diagnostic tool for understanding how CRs propagate in the Milky
Way.

Carbon nuclei are produced abundantly in many astrophysical environments, being accel-
erated by supernovae (SNs), among other sources. Boron, on the other hand, is not a primary
product of these sources. Instead, it is produced through spallation processes involving CNO
(carbon, nitrogen, and oxygen) nuclei. Spallation is a type of nucleosynthesis mechanisms
wherein two nuclei interact, producing something else after interacting.

The most important channels for boron production are through spallation processes in-
volving carbon and oxygen. The boron-to-carbon ratio is an important observable because
it provides an estimate of the average length travelled by cosmic rays. The reason for that
is simple: carbon is believed to be produced in astrophysical objects, whereas boron is only
produced via spallation processes. In other words, B/C is kind of a proxy for the distance and
age of the sources of cosmic rays in the Galaxy. The trajectory length of the CRs depends
on the magnetic field. This is how diffusion comes into play, and this the reason why the
boron-to-carbon ratio is a proxy for the diffusion coefficient.

Consider the nucleus of boron, whose predominant stable isotope is 11B. Suppose no
astrophysical sources produce boron. The most important channels for boron production is
through spallation processes involving carbon and oxygen. Now apply eq. 2.692.69 to it in the

4This is reasonable considering that hydrogen does compose more than 80% of the Galactic matter content.
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absence of a source term:

nB(E)

τesc(E)
+
vnB(E)

λB(E)
= vnH [σC→BnC(E) + σO→BnO(E)] . (2.70)

By defining the escape length as

λesc(E) ≡ vτesc(E) , (2.71)

and noting that carbon and oxygen are found in roughly the same amount (i.e., nC ≈ nO), the
equation reduces to

nB(E)

nC(E)
'

vnH
1

τesc(E)
+ v
λB(E)

σC→B + σO→B . (2.72)

The boron-to-carbon ratio (often symbolised by B/C) is an important observable because
it provides an estimate of the average length travelled by CRs. The reason for that is simple:
carbon is believed to be produced in astrophysical objects, whereas boron is only produced via
spallation processes. In other words, B/C is kind of a proxy for the distance and age of the
sources of cosmic rays in the Galaxy. The trajectory length of the CRs depends on the magnetic
field. This is how diffusion comes into play, and this the reason whereby the boron-to-carbon
ratio is a proxy for the diffusion coefficient.

Cosmic-ray deflections in magnetic fields depend on the charge of the particle. In the
case of an atomic nucleus of mass A and atomic number Z, the charge is Ze. A convenient
definition is the rigidity, defined as

R =
pc

Ze
=
A

Z

√
E2kin + 2mpc

2Ekin , (2.73)

which also establishes a connection between momentum and kinetic energy per nucleon (Ekin).
Recalling §2.1.22.1.2, in particular eq. 2.432.43, there is a general dependence of the average

displacement of a particle (actually, the square of it,
〈
r2
〉
) on time for different diffusion

regimes: 〈
r2
〉
∝ tχ

This directly connects to the diffusion coefficient (eq. 2.442.44 and 2.462.46). By fitting the experi-
mental data (see fig. 2.12.1), it is possible to constrain the diffusion coefficient. In general, it is
commonly assumed that the diffusion coefficient has the form

D ∝ Rδ . (2.74)

The symbol δ, used here to designate the diffusion index, is adopted only for consistency with
most the literature. It is simply δ = αB + 1, with the magnetic spectral index (αB).

This rigidity dependence leads to differences at low and high energies since energy does not
scale with it linearly. Knowing all cross sections and having measured the boron-to-carbon ratio,
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it is possible to infer the index δ and hence αB. This is the goal of many recent publications in
the literature [], which make use of measurements from cosmic-ray satellites such as Payload
for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) and the Alpha
Magnetic Spectrometer (AMS). In fact, results by AMS-02 are in excellent agreement with a
Kolmogorov-type turbulent spectrum with δ = 0.333 ± 0.014(fit) ± 0.005(syst) [3434]. Note
that the low- and high-energy behaviour of δ are different. At much higher energies, δ ' 0.6 [].

Having inferred the magnetic spectrum from observations, it is possible to compute the
number density of each particle species as in eq. 2.692.69 for any primary nucleus a. Consider
a particular nucleus that is produced in astrophysical objects such that the source term is
non-zero (Qa(E) 6= 0) whose flux is not significantly affected by the decay of other nuclei. It
is possible to show that

na(E) =
Qa(E)τesc(E)

1 + 1
λa
λesc(E)

. (2.75)

Note that once the diffusion coefficient is computed, rigidity and energy can be used inter-
changeably.

If the source (or sources) emits a power-law spectrum of the form

Qa(E) ∝ E−αsrc , (2.76)

having measured a power-law spectrum of the form

na(E) ∝ E−αobs , (2.77)

eq. 2.752.75 leads to
αsrc = αobs + 1− δ = αobs − αB . (2.78)

Analyses of measurements suggest αsrc ≈ 2.1 []. Note that this generally agrees with the
well-known Fermi mechanism, described in 1.11.1.

A measurements of the B/C ratio by Alpha Magnetic Spectrometer (AMS) are shown in
fig. 2.12.1. The data is consistent with a power-law index of δ ≈ −0.33 at the energies indicated
by the red line (see eq. 2.742.74). This offers valuable insights into the diffusion of CRs in the
Galaxy. In particular, it is notably consistent with Kolmogorov’s turbulence theory [3535], which
predicts δ = −13 .

2.3.4 The positron fraction
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Figure 2.1: The boroon-to-carbon ratio measured by AMS. Figure taken from [3434].

2.4 Exercises

2.1 A charged particle of mass m and charge q moves in a uniform magnetic field ~B = B0ẑ .
Assume there are no magnetic fields.
(a) Write down the Lorentz force equation for the particle.
(b) Solve the equations of motion assuming the initial velocity ~v0.
(c) Show that the particle follows a helical trajectory.
(d) Compute the Larmor radius RL for this particle.

2.2 A population of charged particles moves in a uniform magnetic field ~B = B0ẑ ,
experiencing small-angle scattering due to interactions with magnetic turbulence. Suppose the
particles do not diffuse in the direction perpendicular to the magnetic field, i.e., Dxy = Dyx =
Dxx = Dyy = 0.
(a) Write down the Fokker-Planck equation for the particle distribution function f (µ, t) in
pitch-angle space, where µ = cosφp, with φp ≡ arctan(v⊥/v‖).
(b) Assume a constant diffusion coefficient Dµµ = D0. Find the stead-state solution f (µ) for
this equation.
(c) Is there a physical condition that should be imposed on the solution to item (b) to ensure
that f (µ) is “well-behaved”?
(d) Now, suppose that at t = 0 all particles are emitted exactly in the direction of the
magnetic field, such that f (µ, 0) = δ(µ − 1), where δ refers to the Dirac delta function.
Solve the equation for f (µ, t). Hint: Use the ansatz of a random-walk diffusion solution (see
eq. 2.402.40).
(e) What is the physical meaning of the solution obtained in item (d)?
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2.3 Consider a time-independent version of the diffusion-convection equation:

Dna(~p, ~x, t)

Dt
− ~∇ ·

[
D~

~

(~x)~∇na(~p, ~x, t)
]
= Qa(~p, ~x, t)− ξa(~p, ~x, t) + χa(~p, ~x, t) .

(a) Suppose there are no interactions nor decays, and consider that the system is in a steady
state. Write the equation explaining the simplifications made.
(b) Write the corresponding differential equation in one dimension, explaining the assumptions
made. Use cylindrical galactocentric coordinates.
(c) Solve the equation derived in item (b) above and below the Galactic plane.
(d) Derive a steady-state solution for the equation in item (b).
(e) Sketch the solution for the steady-state solution in item (d) as a function of the distance
from the Galactic plane.

2.4 Show that the power-law index of the source spectrum is related to the observed
spectrum through the equation:

αsrc = αobs + 1− δ ,

where αsrc is the power-law index of the source spectrum, αobs is the observed spectrum, and
δ is the index of the rigidity dependence of the diffusion coefficient.
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Interactions, decays, and
other processes

Some particles do not propagate in a straightforward manner. In certain environments, they can
be considerably influenced by external factors such as magnetic fields or interactions with other
particles. These settings encompass intergalactic space, the vicinity of astrophysical objects,
our own galaxy, and even Earth’s atmosphere. The fundamental principles that describe these
processes remain consistent, regardless of the specific environment in which they take place.
This section provides a comprehensive overview of some of these principles, which are relevant
for the propagation of high-energy astroparticles.

3.1 Basic concepts

3.1.1 Kinematics of 2-body interactions

The interaction between two particles can be modelled within the framework of (special-
)relativistic kinematics.

Consider an interaction between any two particles ‘1’ and ‘2’ with masses m1 and m2,
respectively. Their four-vectors are P1 = (E1/c, ~p1) and P2 = (E2/c, ~p2), wherein E denotes
the energy and ~p the momentum in the laboratory frame.

The squared centre-of-mass energy (s ≡ E2CM) is a relativistic invariant. For the centre-
of-mass, this invariant reads

s = E2CM = (E1 + E2)
2 − (~p1 + ~p2)2 c2 , (3.1)

which reduces to
s = m21c

4 +m22c
4 + 2E1E2 (1− β1β2 cos θ) . (3.2)

Here β ≡ v/c refers to the speed of the particle, and θ is the angle (in the lab frame) between
the two particles.

A remarkable feature of equation 3.23.2 is that it does not depend on the outcomes of the
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process of interest. It can be used generically for any two particles.

3.1.2 Cross sections

A generic process A+B → f characterises elastic scattering if the final state (f ) is composed
by the same initial particles (A and B) and no other, which simply means they exchanged mo-
mentum among themselves. In inelastic scattering the particles A and B are not necessarily
part of the final state (f).

The total cross section (σtot) is defined as the sum of the cross sections for elastic (σela)
and inelastic scattering (σine):

σtot = σela + σine . (3.3)

Inelastic scattering lead to the creation of secondary particles (C): A + B → C + . . .. The
inclusive cross section describes exactly this reaction, ignoring all other channels such as
A + B → D + . . ., and so on. In contrast, exclusive cross sections include all possible
by-products of the interaction: A+ B → C +D + . . ..

Inheriting from the mathematical formalism commonly employed in accelerator physics, it
is convenient to consider the laboratory frame. In this frame the notation p+ t→ f is simpler,
wherein p refers to the incident particles (projectiles) and t denotes the target; f still denotes
an arbitrary final state, as before. Now the cross section for this process can be defined as [2828]

σp+t→f =
1

Φi

dNf
dt , (3.4)

where Φp is defined as in eq. ??. The final state can take various values for the momentum
(~pf ). This is captured by the differential cross section:

d3σp+t→f

d3~pf
=
1

Φp

d4Nf
d3~pf dt

. (3.5)

Here the cross section is inclusive. The exclusive cross section for a process p+ t→ f1 + f2 +

. . .+ fj , where j denotes the number of secondaries, can be written by a generalisation of the
equation above:

d3σp+t→f1+...+fj
d3~pf

=
1

Φp

d3j+1Nf

d3~pf1 . . . d3~pfj dt
. (3.6)

3.2 Radiation from moving charges

3.2.1 General formulation

The Larmor formula [3636] for the power (dE/dt) radiated by a charged particle of charge q and
mass m moving with acceleration ~a is given by:

dE
dt = −

q2a2

6πε0c3
, (3.7)
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where ε0 is the vacuum permittivity, and c is the speed of light. The acceleration ~a is related
to the position by ~a = ~̈r . The power radiated by a moving charge is proportional to the square
of the acceleration, and it is emitted in the form of electromagnetic radiation.

This expression can be easily generalised to the relativistic case:

dE
dt = −

q2γ4

6πε0c3
(
γ2|a‖|2 + |a⊥|2

)
, (3.8)

where a‖ and a⊥ refer to the components of the acceleration parallel and perpendicular to the
particle’s velocity, respectively.

Compare eq. 3.83.8 with eq. 3.73.7. It is straightforward to see that for low velocities γ ∼ 1
and the two formulas are equal to each other. However, there is a remarkable change in the
relativistic case, where the power radiated by the particle is proportional to several powers of
the Lorentz factor γ. This is a direct consequence of the relativistic effects on the particle’s
mass and velocity.

The angular distribution of the emitted radiation depends on the solid angle (Ω) between
the acceleration and the velocity of the particle and is given by:

d2E
dt dΩ =

q2

16π2ε0c

∣∣∣%̂× [(%̂− ~β)× ~̇β]∣∣∣2
(1− %̂ · ~β)5

, (3.9)

where %̂ represents the unit vector pointing from the charge to the observer, and ~̇β is the
temporal derivative of the (normalised) velocity ~β. The term within square brackets encodes
the angular distribution of the emitted radiation, as well as the polarisation.

Note that eq. 3.93.9 contains a term that depends on the line of sight (%̂) with respect to the
direction of motion (~β). For relativistic particles, the angle denominator ((1−%̂·~β)) approaches
zero, quickly, implying a strong enhancement of the radiation emitted in the forward direction
— the relativistic beaming.

The radiation emitted by a moving charge is distributed over a wide range of frequencies.
Therefore, it is convenient to express the radiated power in terms of the acceleration’s Fourier
transform, as done by Longair [77]. Let ã(ω) denote the Fourier transform of the acceleration,
for an angular frequency ω. To simplify the notation, I will drop the tilde and refer to the
acceleration as a function of time explicitly as a(t), and to its Fourier transform as a(ω). This
relation can be written as:

a(t) =

∞∫
−∞

dω a(ω) exp (−iωt) . (3.10)

Total total energy emitted by the particle at a given frequency (ω), is given by [77]:

I(ω) =
q2

3πε0c3
|~a(ω)|2 , (3.11)
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where I(ω) is the intensity of the radiation emitted at a given (angular) frequency throughout
the time interval within which the particle undergoes accelerated. It is related to the total
power through the expression:

dE
dt = −

E/~∫
0

dω I(ω) . (3.12)

3.2.2 Bremsstrahlung

Bremsstrahlung, also known as braking radiation, is the radiation emitted by a charged particle
under the effect of Coulombian forces from another charged particle. The archetypical case is
the deceleration of electrons by atomic nuclei.

Here the results for the more general relativistic case will be presented. Following eq. 3.83.8,
the power radiated by a particle of charge q and massm moving with acceleration ~a requires the
computation of the components of the acceleration parallel and perpendicular to the particle’s
velocity. Let q′ be the charge of the target particle (e.g., the nucleus) and b denote the impact
parameter in the classical sense. It is possible to show that the distance between the particle
and the target is essentially a right triangle with sides b and γvt, where v is the velocity of
the particle and t is the time elapsed since the beginning of the interaction. Therefore, the
parallel and perpendicular components of the acceleration are given by [77]:

a‖ =
qq′γ

4πε0m

vt

R3
, (3.13)

a⊥ =
qq′γ

4πε0m

b

R3
, (3.14)

where R ≡
√
b2 + (γvt)2.

The power radiated is obtained by plugging these expressions into eq. 3.83.8:

dE
dt = −

q4q′2

96π3ε30

γ4

m2c3
1

R3
(
b2 + v2t2

)
. (3.15)

The total energy radiated by the particle is given by eq. 3.113.11 [77]:

I(ω) =
q4q′2

24π4ε30

ω2

m2c3v4
1

γ4
[
K20(υ) + γ

2K21(υ)
]
, (3.16)

where υ = ωb
γv , and K0 and K1 represent the modified Bessel functions of the second kind

of order zero and one, respectively. The second term within square brackets refers to the
contribution of the parallel component of the acceleration, whereas the first refers to the
perpendicular component.
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3.2.3 Synchrotron radiation

When exposed to a magnetic field, charged particles can release synchrotron radiation. The
radiated power is given by eq. 3.83.8, where the acceleration is now the centripetal acceleration
of the particle moving in a circular path due to the magnetic Lorentz force. In this case, the
acceleration is perpendicular to the direction of motion, such that a‖ = 0 and

a⊥ =
q

mγ
|~v × ~B| (3.17)

For a particle of mass m and charge q, moving with velocity ~v , the energy loss per unit
time is given by:

dE
dt = −

q4

6πε0

1

c3m2
(γvB sin θ)2 , (3.18)

where ε0 denotes the vacuum permittivity, and ~B represents the magnetic field. Here, θ is the
angle formed by the magnetic field with the direction of motion. Note that when the particle’s
motion aligns with the magnetic field, i.e., ~p ‖ ~B, no radiation is emitted.

For an ultrarelativistic electron, eq. 3.183.18 can be cast into a form that contains the magnetic
energy density (uB = B2/2µ0):

dE
dt = −2σTuBcγ

2 sin2 θ , (3.19)

where σT is the Thomson cross section, defined in §3.3.13.3.1.
The intensity of the radiation emitted by the particle is given by eq. 3.113.11, which leads to

the following results:

I‖(ω) =
√
3q2

8πε0c

ω

ωc
γ sin θ

 1
ωc

∞∫
ω/ωc

K5/3

(
ω′

ωc

)
dω′ −K2/3

(
ω

ωc

) , (3.20)

I⊥(ω) =
√
3q2

8πε0c

ω

ωc
γ sin θ

 1
ωc

∞∫
ω/ωc

K5/3

(
ω′

ωc

)
dω′ +K2/3

(
ω

ωc

) , (3.21)

where K5/3 and K2/3 are modified Bessel functions of the second kind of order 5/3 and 2/3,
respectively. Here ωc is the critical frequency (actually, angular frequency) of the emitted
synchrotron radiation, given by:

ωc =
3c

2v

|q|B
m

γ3 sin θ . (3.22)

For the full derivation, see the detailed discussion in chapter 8 of Longair [77]11.
Synchrotron radiation plays a central role in the study of astrophysical sources. On one

1In the book, Longair [77] introduces many intermediate variables whose explanations and/or derivations only
become clear several pages later. I opted for already introducing the meaningful physical quantities from the
start, and writing everything in terms of them, namely the critical frequency.
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hand, it can be the dominant energy-loss mechanism of charged particles, decreasing their
energy and counter-acting possible energy gains due to acceleration. On the other hand, it is
thanks to synchrotron emission that it is possible to infer the properties of magnetic fields in
astrophysical sources [3737], and also identify particle acceleration in astrophysical shocks (see,
for instance, fig. 1.31.3).

3.3 Electromagnetic interactions

3.3.1 Thomson scattering

Thomson22 scattering is the elastic scattering of photons by a (free) charged particle (X±):

X± + γ → X± + γ . (3.23)

It happens when the energy of the photons is much less than than the particle’s energy in
its own rest frame, such that a non-relativistic treatment is appropriate. In fact, Thomson
scattering can be seen as the classical limit of Compton scattering wherein the photon energy
is conserved. The scattering cross section for this process is given by

σ =
8π

3

(
q2

4πε0mc2

)2
. (3.24)

For electrons, this cross section is known as the Thomson cross section (σT),

σT =
8π

3

(
e2

4πε0mec2

)2
≈ 6.65× 10−29 m2 . (3.25)

Intuitively, Thomson scattering can be viewed as an interaction between a light a charged
dipole, representing the particle. Mathematically, the derivation follows along these lines,
considering the electromagnetic field of the charge in the dipolar approximation. The light
excites the dipole, which then re-radiates. One of the most important characteristics of the
emitted radiation is that it is polarised in the direction of motion, with most power being
radiated perpendicular to the direction of acceleration.

Unlike Compton scattering, Thomson scattering is not a quantum process. It is a classical
effect, and it is the simplest interaction between light and matter. The particles involved do
not change their energy.

Thomson scattering is responsible for generating polarised radiation in a variety of astro-
physical settings. For example, the cosmic microwave background (CMB) has ∼ 10% linear
polarisation which affects the so-called E-modes33. While this offers direct hints of the processes

2It is common to misattribute this effect to certain ‘Thompson’. This is historically incorrect. This scattering
is named after J. J. Thomson, who first calculated this effect in detail in his 1906 book “Conduction of electricity
through gases”.

3
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taking place in the early universe, which led to this phenomenon, it also acts as backgrounds in
the study of other phenomena, such as the stochastic gravitational wave (GW) background [].

3.3.2 Breit-Wheeler pair production

Breit-Wheeler pair production is one of the simplest processes in quantum electrodynamics
(QED). It is essentially the direct production of an electron-positron pair due to the interaction
of two photons [3838]:

γ + γbg → e+ + e− , (3.26)

where γbg refers to a background photon (e.g., CMB, extragalactic background light (EBL)).
The cross section, shown in fig. 3.253.25 for this process is:

σ(β) =
3σT
16

(
1− β2

) [(
3− β4

)
ln

(
1 + β

1− β

)
− 2β

(
2− β2

)]
, (3.27)

where σT represents the Thomson cross section (see eq. ??), and

β =

√
1−
4m2ec

4

s
. (3.28)

Here s is the squared centre of mass energy, which for a high-energy photon with energy E
scattering off a low-energy background photon of energy ε reads

s = 2Eε (1− cos θ) , (3.29)

wherein θ denotes the collision angle. It follows immediately that the kinematic thresholds for
this interaction are smin = m

2
ec
4 and smax = m

2
ec
4 + 2Eεmax(1 + β).
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Figure 3.1: Cross section for pair production as a function of the centre-of-mass energy of the
produced particles. Figure taken from ref. [3939].

It is natural to think that electrons and positrons will have approximately the same energy.
In the high-energy regime (s � m2ec

4), also known as the Klein-Nishina limit, this is not
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necessarily true. In this case, the energy of the leptons produced will depend on the differential
cross section for the process:

dσ
dy ∝

1

y

[
y2

1− y + 1− y +
(1− β2)2

4y(1− y)2

]
1

1 + 2β2 − 2β4 , (3.30)

where y is the fraction of the energy of the energetic photon being taken by one of the particles
produced. The other particle, evidently, takes a fraction of the primary’s energy of 1− y .

3.3.3 (Inverse) Compton scattering

This basic QED process is described by the reaction:

e± + γbg → e± + γ . (3.31)

Inverse Compton scattering (ICS) is, therefore, a simple momentum exchange, as is the usual
Compton effect [4040], but in this case involving a high-energy electron and low-energy photons
instead of the opposite. Compton effect, both the direct and the inverse, constitute one of
the most important milestones of 20th-century physics [4141] with far-reaching consequences in
several sub-fields of physics, especially astrophysics.

The squared centre-of-mass energy (s) is

s = m2ec
4 + 2Eε (1− β cos θ) , (3.32)

with β given by

β =
s −m2ec4

s +m2ec
4
. (3.33)

Its kinematic threshold is simply the requirement that the electron continues to exist after the
collision: smin = m

2
ec
4.

The cross section for ICS can be written as [4242]

σ(s) =
3σT
8β

m2ec
4

s

[
2

β(1 + β)
(2 + 2β − β2 − 2β3)−

1

β2
(2− 3β2 − β3) ln

(
1 + β

1− β

)]
.

(3.34)
In the low-energy limit (s ∼ m2ec4), eq. 3.343.34 reduces to the usual Thomson scattering result,
given by eq. 3.253.25.

After the scattering the electron (or positron), which had an initial energy E, will have
energy E′, as dictated by the differential cross section [4343]:

dσ
dE′ =

3σT
8E

m2ec
4

s

1 + β

β

[
y +
1

y
+
2(1− β)

β

(
1−
1

y

)
+
(1− β)2

β2

(
1−
1

y

)2]
, (3.35)

with y ≡ E′/E.
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Figure 3.2: Cross section for inverse Compton scattering as a function of the kinetic centre-
of-mass energy of the produced particles. Figure taken from ref. [3939].

3.3.3.1 Synchrotron self-Compton

In the presence of magnetic fields, electrons can emit synchrotron radiation (see §3.2.33.2.3). If this
happens at a sufficiently high rate, the density of synchrotron-emitted photons in the medium
can increase, creating a new target for interactions. If electrons scatter off this radiation field,
created by themselves, the process is known as synchrotron self-Compton (SSC). This is a
crucial process in the context of high-energy astrophysics, especially in the study of active
galactic nuclei (AGNs) and gamma-ray bursts (GRBs).

3.4 Photonuclear interactions

Photonuclear interactions involve the interaction of a nucleus X, with atomic mass A, com-
posed of Z protons (AZX). They are generally written as AZX+γbg → . . .. The exact interaction
taking place depends on the cross section for the processes, which is a consequence of the
spectral energy distribution of background photons (γbg) and on the energy of the nucleus.
The ellipsis (‘. . .’) indicate the results of the interaction, which depends on the spectral distri-
bution of background photons as well as on the energy of the nucleus. Some of the processes
relevant for high-energy modelling are listed below

3.4.1 Bether-Heitler pair production

When a nucleus interacts with a background photon (γbg) electron-positron pairs can be
created [4444]. This is described by the reaction:

A
ZX+ γbg →AZ X+ e+ + e− . (3.36)

It is essentially the equivalent to bremsstrahlung radiation with a photon instead of an elec-
tron/positron on the left side of the reaction, which is expected for symmetry reasons.
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The threshold squared centre-of-mass energy for this process is given by

smin = (mX + 2me)
2 , (3.37)

which implies that the minimum energy (εmin) of the background photon, measured in the lab
frame, is

εmin =
mec

2

2E

(
2m2e +memX

)
c2 , (3.38)

wherein the E denotes the energy of the incident nucleus.

For UHECRs traversing cosmic expanses, the mean free path for Bethe-Heitler pair pro-
duction is fairly small, but so is the inelasticity of the process (. 10−3).

[add figure for each type of background]

Remarkably, it has been postulated that this process underlies the origin of the ankle feature
in the cosmic-ray spectrum if protons comprise the bulk of the UHECR flux [4545], which is not
the case [4646].

3.4.2 Meson photo-production

The generation of mesons resulting from the interaction between a cosmic-ray nucleus (AZX)
and a background photon (γbg) holds immense significance within the multi-messenger frame-
work, as it yields both neutrinos and photons. For instance, when considering protons, in
their rest frame, the interaction with photons with energies ε′ & 1 GeV is characterised by
the dominance of a short-lived resonance, which rapidly transforms into mesons and other
secondary particles. As energy levels escalate, the potential for multiple particle generation
during a single interaction also increases. Furthermore, direct meson production is feasible at
these elevated energies.

p + γbg → ∆+ →

p + π0 ,n + π+ .
(3.39)

Naturally, there are also channels that produce, for example, ∆− or ∆0 resonances, and even
higher-order excitations.

The cross section for the interaction between a nucleon and a background photon in the
rest frame of the nucleon is shown in Fig. 3.33.3.

The total proton-photon cross section is in reality a combination of several processes,
some of which involve the direct production of single or multiple pions, or other resonances.
The bumpy structure visible in fig. 3.33.3 is actually the result of these components, which are
identified in fig. 3.43.4.

Considering a proton, the threshold for this process is

smin = (mp +mπ0)
2 c4 , (3.40)
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Figure 3.3: The graph shows the total cross section for p + γbg → meson (orange line) and
n + γbg → meson (green line), as a function of the background photon energy in the nucleon
rest frame (ε′). Figure taken from ref. [3939].

Figure 3.4: Total cross section for p + γbg → meson, as a function of the background photon
energy in the nucleon rest frame. Figure taken from ref. [2828].

which implies that the threshold energy for a proton (E), measured in the lab frame, is

Emin =
mπ0c

2

4ε
(2mp +mπ0) c

2 . (3.41)

For a CMB photon, the peak energy is ε ≈ 6× 10−4 eV, which implies Emin ∼ 1020 eV.

Photo-production of mesons is a crucial process in the context of UHECR propagation.
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It is responsible for the well-known Greisen-Zatsepin-Kuzmin (GZK) cut-off in the cosmic-ray
spectrum, which implies a spectra feature as a consequence of the energy loss of UHECR
protons interacting with the CMB [4747, 4848]. Coincidentally, the spectral suppression measured
by UHECR observatories at energies above 5 × 1019 eV roughly coincide with the thresholds
calculated above, if the full distribution of the CMB is considered. This is actually the main
channel for production of cosmogenic particles.

3.4.3 Photodisintegration

Interactions involving cosmic rays and background photons can fragment nuclei into smaller
constituents:

A
ZX+ γbg →A

′
Z′ X+ . . . . (3.42)

This phenomenon is usually interpreted as two sequential subprocesses, the first being photo-
absorption by the nucleus, which creates an excited state, and its subsequential decay that
often emits nucleons [4949].

The outcomes of photodisintegration are exemplified by processes such as:
• proton emission: AZX+ γbg →A−1Z−1 X+ p;
• neutron emission: AZX+ γbg →A−1Z X+ n;
• α-particle emission: AZX+ γbg →A−4Z−2 X+42 He.

At ultra-high energies, the photodisintegration cross section is significantly influenced by two
components. The first is the giant dipole resonance (GDR), which dominates at photon
energies ε′ . 50;MeV in the nucleus rest frame. The other is the quasi-deuteron (QD)
emission, prevalent in the energy range 50 . ε′/MeV . 150.

Photodisintegration can be viewed as a sort of collective effect, due to the interaction
of a photon with a nucleus as a whole. In contrast, photo-production of mesons, described
in §3.4.23.4.2 is a nucleon-level process. Fig. 3.53.5 illustrates this difference for an iron nucleus.
There is a clear transition between the two regimes. As energy increases, one observes the
onset of meson photo-production, whereas for “lower” energies (in the nucleus rest frame),
the photon-nucleus interaction is strongly dominated by the GDR.

When modelling photodisintegration processes, it is important to bear in mind that pho-
tonuclear cross sections are not fully known. As a consequence, they can have a considerable
impact in the propagation of UHECRs [5151–5353]. Consequently, this knowledge gap holds the
potential to substantially impact the consequent production of photons and neutrinos [5454].

The threshold energy for photodisintegration depends on the outcomes of the process, such
that a universal formula cannot be provided.

3.4.4 Photonuclear elastic scattering

Nuclei can undergo interactions with background photons and simply transfer energy to them.
This process is known as elastic scattering: AZX+ γbg →AZ X+ γ. At ultra-high energies, this
is subdominant compared to photodisintegration.
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Figure 3.5: Total cross section for 5626Fe + γbg → . . . . The left-hand side shows the photo-
disintegration regime, whereas the right-hand side indicates the regime in which mesons are
produced (called ‘photo-meson regime’ in the plot). The horizontal axis denotes the photon
energy in the nucleus rest frame (εr ). Figure taken from ref. [5050].

Elastic scattering is negligible as an energy-loss mechanism of nuclei, but it can be impor-
tant in computing photon fluxes produced by energetic cosmic-ray nuclei.

3.5 Hadronuclear interactions

Hadronuclear interactions are generally elaborate and cannot be exactly described. This is
because the underlying theory of strong interactions, quantum chromodynamics (QCD), poses
major challenges in terms of computational treatment.

The simplest case is the interaction between two nucleons. In particular, proton-proton
interactions are important in astrophysical constants. There are several possible channels. The
overwhelming majority result in the production of pions. Some of these channels are shown
below.

p + p →



p + p + π0 ,

p + p + π0 + π0 ,

p + n + π+ + π0 ,

p + n + π+ + π− + π0 .

(3.43)

The cross section for proton-proton interactions are not exactly known. Instead, it is
obtained through a combination of measurements [5555–6161] and extrapolation to higher energies
using hadronic interaction models [6262–6565]. Fig. 3.63.6 shows the measurements, together with
some parametrisations.
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Figure 3.6: Inelastic proton-proton cross sections as a function of the momentum of the
incident proton. The markers indicate the measurements, whereas the lines refer to some
specific parametrisations of the cross section [6666, 6767]. Figure taken from ref. [doerner2025a].

For nucleus-nucleus interactions, Glauber theory [6868] can be employed. In this case, the
collision can be modelled as a succession of interactions between a nucleon from the projectile
with a nucleon from the target nuclei. Even though this is an approximation, it sets an upper
limit to the total inelastic cross section, which should be smaller than the sum of all individual
nucleon-nucleon cross sections. This approximation is not adequate for lighter nuclei [6969].

The nucleus-nucleus cross section can be approximated as [7070]

σ
Ap,At
ine (χ) = πr20

[
A1/3p + A

1/3
t − b0

(
A−1/3p + A

−1/3
t

)]
max

{
1, log

(
σppine(χ)

σppine(χ0)

)}
, (3.44)

wherein Ap and At refer to the atomic mass of the incident and target nuclei, respectively, and
the coefficient b0, empirically obtained, reads [6767]

b0 =

2.247− 0.915
(
1 + A

−1/3
t

)
if p = 1H ,

1.581− 0.876
(
A
−1/3
p + A

−1/3
t

)
if p 6= 1H .

(3.45)

The variable χ is conveniently defined in terms of the kinetic energy per nucleon of the incident
particle

χ(E) =
E −mAi c2

A

(
2mπ0c

2 +
m2
π0
c2

2mp

) , (3.46)

52



Interactions, decays, and other processes

where σppine as in eq. ?? and χ0 ≡ x(1 PeV).
Nucleus-nucleus interactions are usually treated by employing event generators, which are

libraries that models a given particle interaction based on their initial state, accounting for the
stochasticity of the process at hand. Some widely used event generators include PYTHIA44 [7272,
7373], HERWIG [7474–7676], and Sherpa [7777], among others. For higher energy studies, in particular
the interaction of CRs with air, commonly used hadronic interaction codes are EPOS [7878],
QGSJet [7979–8181], and Sibyll [8282, 8383]. Note, however, that at ultra-high energys (UHEs), these
generators are limited by the availability (or actually lack thereof) of accelerator data, since
they operate at much higher energies than what current accelerators can reach.

For astrophysical applications, hadronuclear interactions are usually parametrised based on
simulations. Common parametrisations includes those from refs. [6666, 6767, 8484], some of which
are also shown in fig. 3.63.6. One can argue that considering all other astrophysical uncertainties,
the parametrisations provide an adequate approximation. However, recent simulation-based
studies challenge this assertion [8585].

3.6 Energy-loss processes

3.6.1 Cosmological adiabatic losses

Energy losses occur for all particles, due to the adiabatic expansion of the Universe. The
change in redshift (dz) corresponding to an infinitesimally small distance d` is described by
the equation:

dz = H0
c

√
ΩΛ +Ωm(1 + z)3 d` . (3.47)

Here, H0 is the current Hubble parameter, approximately 67.3 km s−1Mpc−1, and Ωm and
ΩΛ stand at about 0.3147 and 0.6853 respectively, representing the matter and dark-energy
densities within the flat ΛCDM model, as per references [8686]. It is worth noting that eq. 3.473.47
would include an additional term accounting for radiation, although it is only relevant during
the very early stages of the universe’s life (z & 1000).

Ultimately, the energy lost by a particle with an initial energy E0, as measured at the
source, relates to the observed energy (E) as follows:

E =
E0
1 + z

. (3.48)

3.7 Particle mixing

Processes other than interactions and decays that change the nature of a particle also exist.
Within a quantum-mechanical framework, they are usually described by a mixing of some

4See ref. [7171] for a historical overview of this widely-used event generator.
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intrinsic eigenstates55 of a family of particles (X), which results in propagation eigenstates66

(X). This notion can be mathematically expressed as
X1
...
Xn

 =

U11 . . . U1n

... . . . ...
Un1 . . . Unn



X1
...
Xn

 , (3.49)

where Xi refers to the particle being observed. Here Ui j are elements of U, the mixing matrix.

If U is diagonal, then there is no mixing between states. In this case, the intrinsic states
of the particles are exactly equal to the propagation eigenstates. However, if there are non-
vanishing off-diagonal elements, the corresponding states will mix among themselves.

The intrinsic eigenstates, by definition, are the free (i.e., in the absence of any potentials)
particle solutions to the wave equation, and thus can be written as

|Xi(t)〉 = |Xi〉 exp [i (~pi · ~x − Ei t)] , (3.50)

where ~pi and Ei denote the momentum and energy of particle Xi , respectively.

The mixing of states is described by the Schrödinger equation:

i~
d|ψ〉
dt = H|ψ〉 , (3.51)

wherein H is the Hamiltonian of the system and

|ψ〉 =
n∑
j=1

aj |Xj〉 , (3.52)

for arbitrary constants cj satistfying the condition
∑
j |aj |2 = 1.

The time-evolution operator, assuming that the H is time-independent, is defined as

U(t) = exp

(
−
i

~
Ht

)
. (3.53)

The connection between intrinsic and propagation eigenstates through the unitary (U†U =
I) matrix U is

|Xi〉 =
n∑
j=1

Ui j |Xj〉 . (3.54)

5This terminology is not found elsewhere in the literature. In principle, there is no such thing as an intrinsic
eigenstate, since any basis can be chosen to describe the same phenomenon. Depending on one’s philosophical
inclinations, what I am calling intrinsic eigenstates can have an ontological meaning, with direct correspondence
with real-world entities. However, for the purposes of this discussion it suffices to understand these states as
the eigenstates of the free Hamiltonian.

6Once again, I make up a nomenclature that is not usually found in the literature, propagation eigenstate.
This refers to the states represented in a basis convenient for describing what is actually observed after the
particle, which is a quantum superposition of states, travelled a certain distance.
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Conversely, since U is unitary,

|Xi〉 =
n∑
j=1

U∗i j |Xj〉 . (3.55)

The probability (PXi ) that a state Xi will be detected after the particle travelled a distance
L is simply the sum of the probabilities of each component ending up as Xi :

PXi (L) =

n∑
j=1

∣∣〈Xi |Xj〉∣∣2 . (3.56)

The general form given by eq. 3.493.49 can be applied to many problems, the most notorius
of which is neutrino oscillations, described in §3.7.13.7.1.

3.7.1 Neutrino oscillations

Neutrinos are detected in what is called flavour states — the electron (νe), the muon (νµ) and
the ντ neutrinos — the flavour eigenstates, which correspond to what had been previously
been called propagation eigenstates. However, they are a superposition of intrinsic eigenstates,
which for neutrinos are mass eigenstates77.

The original idea of neutrino oscillations dates back to the late 1950s, building on the
work of B. Pontecorvo [8787]. The underlying theory of oscillations was further developed in
the following decade by others [8888, 8989]. Only towards the end of the 20th century has this
phenomenon been unambiguously confirmed through observations of solar neutrinos [9090, 9191].

Let ν represent the flavour state of a neutrino, and υ its mass state. If propagation is in
vacuum, the mixing matrix (U) has the general form

U =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Ueτ1 Uτ2 Uτ3

 , (3.57)

where Ue1 refers to the mixing between the mass eigenstate 1 and the flavour state corre-
sponding to the electron neutrino (e), and similarly for the other terms. U is the so-called
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, given by

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e iδ c12c23 − s12s23s13e iδ s23c13

s12s23 − c12c23s13e iδ −c12s23 − s12c23s13e iδ c23c13


e
iα1/2 0 0

0 e iα2/2 0

0 0 1

 ,

(3.58)
wherein ci j ≡ cos θi j and si j ≡ sin θi j , and αi in the right-most matrix is related to whether
neutrinos are Dirac or Majorana particles.

7Sometimes the mass eigenstates are referred to as physical eigenstates. I prefer to avoid such terminology,
due to the philosophical implications of the word ‘physical’. There is no guarantee that the mass eigenstates
have direct correspondence to what really exists in reality. In fact, what we call neutrinos might simply be a
manifestation of other yet-unknown phenomenon which, in this view, would be even more “physical”.
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Eq. 3.583.58, together with eq. 3.563.56, allow the calculation of oscillation probabilities, which
is used to infer neutrino states after propagating in the universe. Note, however, that this
assumes propagation in vacuum. While this assumption is adequate for many applications,
this is not always the case. For that the Hamiltonian that goes into the Schrödinger equation
(eq. 3.513.51) would change, making the treatment more complicated and often requiring advanced
computational methods for the solution.
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3.8 Exercises

3.1 The relativistic Larmor formula for the power radiated by an accelerated charge is:

dE
dt = −

q2γ4

6πε0c3
(
γ2|a‖|2 + |a⊥|2

)
.

(a) Derive this equation. (Hint: Use Liénard-Wiechert potentials.)
(b) Compute the power radiated per solid angle element.
(c) If an observer sees synchrotron radiation emitted by a particle at an angle θobs, how does
this relatd to the synchrotron power measured by another observer at an angle θ′obs > θobs?
Discuss.
(d) Demonstrate (mathematically) that the synchrotron spectrum for relativistic particles is
strongly beamed in the forward direction. Explain the underlying reasoning.

3.2 Muons are abundantly produced in astrophysical environments through the decay of
charged pions, being the most important channel for neutrino production. Their main decay
channel is:

µ− → e− + ν̄e + νµ .

Their lifetime in their own rest frame is approximately τµ ≈ 2.2 µs, and their mass is mµ ≈
106 MeV/c2.
(a) Estimate the amount of energy that a muon with Lorentz factor γµ = 106, measured in
the lab frame, will radiate via synchrotron emission, within a time interval of 2.2 µs. Do this
calculation for a galaxy cluster (B ∼ 0.1 nT) and a the surroundings of a GRB (B ∼ 1 kT).
(b) Compute the maximum energy (Emaxe ) the electron can take away from the muon. Explain
your reasoning and assumptions made.
(c) Suppose the muon decays within τµ in its own rest frame. How much time will it have
lived according to the observer of item (a)?
(d) The characteristic synchrotron cooling time is defined as

τsync = E

∣∣∣∣dEdt
∣∣∣∣−1 .

Compare this quantity, τsync, with the lifetime of the muon estimated in (b). What can you
infer from this comparison? Is muon synchrotron an important channel for the energy loss of
muons in astrophysical environments?

3.3 Suppose two protons collide and produce other particles, while still remaining protons:

p + p → p + p + . . . ,

where the ellipsis (‘. . . ’) refer to the other particles produced. (a) What is the simplest way
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to produce anti-protons out of this collision? Write down the reaction.
(b) Compute the minimum squared centre-of-mass energy (s) required for this reaction to be
possible.
High-energy protons travelling in the interstellar medium produce, among other particles, co-

pious amounts of anti-protons. (c) Suppose proton-proton interactions is the main channel for
anti-proton production. Do you think that the spectrum of anti-protons is the same as that of
protons? Explain your reasoning.

3.4 Some collisions between protons and photons produce roughly the same amount of
π0, π+, and π− mesons. This is due to the characteristic isospin symmetry of the strong
interaction.
Suppose the main decay channels of pions are:

π0 → γ + γ ,

π+ → µ+ + νµ → e− + ν̄e + νµ + ν̄µ ,

π− → µ− + ν̄µ → e+ + νe + ν̄µ + νµ .

Compute the ratio of photons to neutrinos of each species.

3.5 Consider the interaction between a cosmic-ray proton and a cosmological photon.
Suppose this interaction produced a neutral pion, whose decay is given by

π0 → γ + γ .

a. Is it possible for the two photons to have different energies? Discuss in detail.
b. Compute the energy of each photon in the rest frame of the pion.
c. Suppose the pion has an energy Eπ0 in the laboratory frame.

3.6 Consider the reaction 24He+ γbg →13 H+ p .
(a) Calculate the minimum squared centre-of-mass energy (smin) for this process to happen.
(b) Based on this result, estimate the minimum energy of the helium nucleus (Emin), in the
lab frame, considering a typical photon from the CMB (εCMB ∼ 0.5 meV) and another one
from the EBL (εEBL ∼ 1 eV).
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Astroparticle Propagation

Astroparticles detected at Earth are not necessarily the same as those that left the sources. A
lot can happen to them as they traverse cosmic expanses. This chapter provides the theoretical
framework for describing the motion of cosmic messengers after they are produced (see §11 for
a discussion on acceleration mechanisms), until they reach Earth. It discusses the possible
interactions of these particles with matter and radiation fields pervading the universe, whose
theoretical basis is provided in §33. It also touches upon how these particles are transported
through putative cosmic magnetic fields along the way, which can alter their trajectories (see
§22).

4.1 Propagation models: ingredients

4.1.1 Radiation fields

The universe is permeated with radiation covering a wide frequency range of the electromag-
netic spectrum. This radiation may be the integrated diffuse signal resulting from structure
formation processes, like the EBL and the cosmic radio background (CRB), or a relic of some
primeval process, as the CMB. These three backgrounds are the most important ones when it
comes to modelling the propagation of astroparticles over cosmological distances.

A general overview of the energy density of the different backgrounds is shown in figure 4.14.1.
Note that, while this figure refers to redshift z = 0, these models can differ considerably at
higher redshifts.

There are other radiation fields that may impact particle propagation. For instance, in the
Milky Way the interstellar radiation field (ISRF) plays an important role for the propagation
of Galactic cosmic rays (GCRs) and very energetic photons [9898].

4.1.1.1 Cosmic Microwave Background (CMB)

The CMB is a blackbody of temperature Tcmb ≈ 2.73 K [8686], with energy density given by

dn(ε, z)
dε =

ε2

π2c3~2

[
exp

(
ε

kBTCMB

)
− 1
]−1
(1 + z)2 , (4.1)
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Figure 4.1: Number density of photons at z = 0 for different backgrounds: CMB (dotted),
EBL (solid) [9292–9494], and CRB (dashed lines) [9595, 9696]. Different colours correspond to different
models. The shaded band represent the uncertainties of the indicated model. Figure adapted
from ref. [9797].

where kB is Boltzmann’s constant, TCMB the CMB temperature, and ε the photon energy.
The energy density of CMB photons today is ' 4× 108 m−3 (see fig. 4.14.1).

4.1.1.2 Extragalactic Background Light (EBL)

The extragalactic background light (EBL) is a diffuse flux of radiation produced during the
formation of structures along the universe’s history, most of which is due to star formation [9999–
101101]. The peaks of the EBL distribution are mostly in the infrared and optical bands, with
a tail extending to the ultraviolet, usually attributed to photons emitted by hot objects being
scattered by dust [102102–104104]. Several models exists for the EBL, some are purely empirical
(for example, [9393, 105105–108108]), whereas others are semi-analytical (e.g. [9292, 9494]). They tend
to generally agree on the spectrum at low redshifts, but there is considerable discrepancy at
higher redshifts [9393].

4.1.1.3 Cosmic Radio Background (CRB)

The cosmic radio background (CRB) can play an important role in the propagation of as-
troparticles depending on their energy, although it can be ignored in many types of study. It
is mostly dominated by radio emission from normal, radio, and starburst galaxies [109109, 110110].
CRB models commonly used to study the propagation of UHE particles include the ones from
refds. [9595, 9696].
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4.1.2 Magnetic fields

4.2 Interaction length

Now the problem at hand consists in finding the probability that a (projectile) particle will
interact with target particles, after a given distanc. Classically, considering a collection of
target particles at rest in the laboratory frame, this probability is related to the notion of cross
section (σ), described in §3.1.23.1.2, which takes into account the amount of “free space” in a
target that would allow for an incident particle to cross. Therefore, the classical notion is purely
geometrical, similar to what was originally described by Ernest Rutherford in his well-known
1911 experiment [111111].

The classical notion of cross section has to be abandoned when treating quantum scatter-
ing. Moreover, particles might not all be static, which makes the treatment more intricate.
Henceforth I will employ this broader definition, despite the fact that I will present a seemingly
“semi-classical” approach to formulate the problem and obtain a general solution.

Suppose a medium composed by an admixture of two types of particles, 1 and 2, with
number densities n1(~p1) and n2(~p2). The number densities n1 and n2 are calculated in this
arbitrary frame, which transforms to their own rest frame, indicated by the superscript o, as
follows:

nj(~pj) = γjn
o
j (~pj) , (4.2)

for j = 1, 2, referring to each of the particle species, where γj is the corresponding Lorentz
factor of the particle in the arbitrary frame.

The number of interacting particles (dN) per unit time (dt) and volume (dV ), is given by

d4N
dV dt = σ (s) cβrel(P1, P2) n1 (~p1) n2 (~p2) , (4.3)

with cβrel(P1, P2) being the relative velocity, given by

βrel(P1, P2) =

√
1−
(m1m2c

2)2

(P1 · P2)2
, (4.4)

which is more conveniently expressed in the form [112112]:

βrel

(
~β1, ~β2

)
=


1 if

(
|~β1| = 1

)
∨
(
|~β2| = 1

)
,√

|~β1 − ~β2|2 − |~β1 × ~β2|2

1− ~β1 · ~β2
otherwise .

(4.5)
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Exercise. Show that the number of particles per unit volume per unit time,

d4N
dV dt ,

defined in eq. 4.24.2, is relativistic invariant.

The Lorentz factor in the direction of relative motion between the two particles (γrel) can
be easily computed from the four-momenta of the particles or the relative velocity [113113]:

γrel =
1√
1− βrel

=
P1 · P2
m1m2c2

= γ1γ2

(
1− ~β1 · ~β2

)
, (4.6)

where γ1 and γ2 are the Lorentz factors of the particles 1 and 2 in the arbitrary reference
frame considered here. Now it is possible to choose the rest frame of one of the particles11, say
particle 1, to proceed with the calculations. In this case, only particle species 1 transforms,
according to the relative Lorentz factor given by eq. 4.64.6. As a consequence, eq. 4.34.3 can be
rewritten as

d4N
dV dt = σ(s) cβrel(P1, P2) (1− ~β1 · ~β2) n1(~p1) n2(~p2) . (4.7)

If there are N0 particles of type 1, it is possible to define the scattering rate (Γ) and the
mean free path (λ) from eq. 4.74.7:

Γ ≡
1

N0

dN
dt ⇒ λ =

β1c

Γ
. (4.8)

4.2.1 Interaction with isotropic photons

A problem of great astrophysical significance is the interaction with photons, which is the
dominant process for high-energy particles travelling large distances. Some of these processes
were described in §33. Given the omnipresence of photons in the universe, such as the CMB
and the EBL (see details in §4.1.14.1.1), it is useful to consider the interaction of a particle of
type 1 with a target distribution of isotropic photons.

In this case, the relative velocity is βrel = 1. The indices 1 and 2, which refer to the
projectile particle the photon, respectively, will be dropped, and the energy of the photon will
be denoted ε. Therefore, from these considerations, it is possible to compute the mean free
path (λ) for this class of processes:

λ−1(E) =
1

2β1

εmax∫
εmin

+1∫
−1

dε d cos θ σ (s) (1− β1 cos θ)
dn(ε)

dε . (4.9)

Eq. 4.104.10 seems to be a general expression for the mean free path of a particle of type 1
interacting with a target distribution of particles of photons. However, the limits of integration

1If this particle is a photon, then there is no way to define a rest frame. However, it follows from eq. 4.44.4
that βrel = 1, and the treatment would be even simpler.
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εmin and εmax are not specified. It would be reasonable to presume that the limits are 0 and
∞, respectively. However, this is not the case. Certain interactions can only happen if the
energy of the photon is within certain limits. There are interaction thresholds that ensure
that there is sufficient energy and momentum for the interaction to take place and produce
the final-state particles. The upper threshold, εmax, would likely break at some extremely high
energy scale like the Planck energy (but there are no such energetic backgrounds). The lower
threshold, εmin, is the trickier one, since it depends on the kinematics of the process at hand.

Eq. 4.104.10 can be written in a variety of ways, depending on the specific process being
considered. Another convenient form is:

λ−1(E) =
1

8βE2

εmax∫
εmin

smax∫
smin

dε ds 1
ε2
(s −m2c4)

dn(ε)
dε , (4.10)

where m denotes the mass of the projectile particle, and s refers to the squared centre of
momentum (CM) energy. Here εmin = εmin(E), εmax →∞, smax = smax(E, ε).

Exercise. Derive eq. 4.104.10 from eq. 4.94.9.

4.3 Optical depth

Consider an astrophysical object located at a distance Ds, corresponding to a redshift zs, emits
particles of a given type with energy Es, as measured at the source. Let Φs(Es) denote this flux.
After propagation, a fraction of these particles might be absorbed through the interactions,
never reaching Earth. Due to the expansion of the universe, discussed in §3.6.13.6.1, the energy of
the particles at the source (Es) will be different from the energy of the particles observed at
Earth (E), through eq. 4.114.11:

Es = E (1 + zs) . (4.11)

The flux of particles of energy E reaching Earth (Φobs(E)) is given by:

Φobs(E) = Φs(Es) exp (−τ(E, zs)) . (4.12)

where τabs(E, z) is the optical depth, which is essentially the distance-integrated inverse mean
free path:

τabs(E) =

Ds∫
0

d` λ−1(E) , (4.13)

where Ds refers to the distance of the origin of the particle to the observer. This equation is
a bit misleading, since there is no guarantee that the background photon distribution remains
the same over time. Moreover, for extragalactic studies, the expansion of the universe might
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become an issue. Therefore, it is useful to use instead the redshift-dependent (see §3.6.13.6.1)
photon density (dn(ε,z)

dε ) and mean free path (λ(E) → λ(E, z)), and perform a change of
variables in the equation above. This leads to the following expression:

τabs(E, z) =

zs∫
0

dz λ−1(E, z) d`dz , (4.14)

where zs is the redshift of origin of the particle.
The optical depth is a crucial quantity in high-energy astrophysics. One example is the

attenuation of high-energy gamma rays as they travel through the universe, and to estimate the
distance to the source of these photons. One example is shown in fig. 4.24.2, where the optical
depth for gamma rays is shown as a function of energy for different redshifts and different
models of the EBL.

Figure 4.2: Flux attenuation factor (exp(−τabs)) for different redshifts, considering different
EBL models. Figure taken from ref. [9797].

A remarkable feature visibile in fig. 4.24.2 is the strong suppression at energies above several
TeV. That imposes an effective horizon for gamma-ray astronomy, beyond which the number
of expected gamma rays detectable at Earth would drop to virtually zero, due to interactions
with the EBL.
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4.4 Exercises

4.1 Consider an isotropic cosmological monochromatic photon background described by

dn
dε (ε, z) =

3

4πR3Hε0
δ(ε− ε0)(1 + z)2 ,

where δ denotes the Dirac delta function, and RH is the (co-moving) Hubble radius and ε0 is
characteristic photon energy of this background, at a given reshift z .
(a) If a high-energy particle X, whose interaction with photons has a constant cross section
σXγ = σ0, propagates through this photon background, how far would it travel, on average?
(b) Suppose the source of this particle is located at redshift zs, with zs � 1. Calculate the
optical depth in this case, using the following approximation:

dz
dt = −H0

√
ΩΛ ,

where ΩΛ is the density of dark energy at present time.
(c) Draw a sketch of what you expect the flux (ΦX(E)) will look like, as seen from Earth, for
three sources located at z1 < z2 < z3, for zi � 1.

4.2 Compute the threshold squared centre-of-mass energy (s) for Breit-Wheeler pair
production in the collision of two photons with energies E and ε.
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