multimessenger constraints on intergalactic magnetic fields

Rafael Alves Batista

Instituto de Física Teórica UAM-CSIC Universidad Autónoma de Madrid

rafael.alvesbatista@uam.es
www.8rafael.com

NPAC Seminar 16-Dec-2021

motivation for this talk

multimessenger astrophysicsoa intergalactic magnetic fields

afael Alves Batista

Instituto de Física Teórica UAM-CSIC Universidad Autónoma de Madrid

rafael.alvesbatista@uam.es
www.8rafael.com

NPAC Seminar 16-Dec-2021

intergalactic magnetic fields (IGMFs)

Rafael Alves Batista | NPAC Seminar | December 16, 2021 | Multimessenger astrophysics & intergalactic magnetic fields

magnetic fields in the universe

Rafael Alves Batista | NPAC Seminar | December 16, 2021 | Multimessenger astrophysics & intergalactic magnetic fields

the magnetised cosmic web

magnetic-field properties

the magnetic fields is usually approximated by a superposition of (nearly-)stochastic components

• strength:
$$B^2 \equiv B_{\text{rms}}^2 = \frac{1}{V} \int_V \left| \vec{B}(\vec{r}) \right|^2 d^3r$$

• power spectrum:
$$M_k \propto k^{\alpha_B - 1}$$

• coherence length: $L_B = \frac{2\pi \int k^{-1} M_k \, \mathrm{d}k}{\int M_k \, \mathrm{d}k}$

• helicity:
$$H_B = \int_V \vec{A}(\vec{r}) \cdot \vec{B}(\vec{r}) d^3r$$

- structure of the field
- in principle, none of these properties are necessarily small, such that all of them need to be taken into account in the models

magnetic fields in the universe

- magnetic fields in galaxies have ~ µG strengths
- to explain these observations, pre-existing seed fields are required
- dynamos can amplify (weak) seed fields
- how did the seed fields originate?
- but if the seed field is strong (B > 10 pG), adiabatic compression alone explains observations

MHD induction equation

$$\frac{\partial \overrightarrow{B}}{\partial t} = \left(\overrightarrow{\nabla} \times \left(\overrightarrow{v} \times \overrightarrow{B}\right) + \eta \nabla^2 \overrightarrow{B}\right)$$
amplification

intergalactic magnetic fields

	how were they produced?
fundamental	what is their role in the evolution of the universe?
questions	how strong are they?
	what is their power spectrum?
	what are their topological properties?

astrophysical mechanisms: during structure formation (e.g. Biermann battery, ...)

primordial mechanisms: large-scale cosmological processes such as inflation, EW phase transition, QCD phase transition,...

intergalactic magnetic fields (IGMFs)

on the importance of IGMFs for multimessenger studies

an example: high-energy emission by clusters of galaxies

CRs wandering in the intracluster medium

Hussain, Alves Batista, de Gouveia Dal Pino, Dolag. MNRAS 507 (2021) 1762. arXiv:2101.07702

- high-energy neutrinos are produced via hadronic processes
- cosmic rays are affected by magnetic fields
- CR interactions are more frequent if magnetic fields are strong

Rafael Alves Batista | NPAC Seminar | December 16, 2021 | Multimessenger astrophysics & intergalactic magnetic fields

neutrinos from clusters: the role of magnetic fields

gamma rays from clusters: the role of magnetic fields

particle propagation in the cosmos

how do high-energy particles propagate over cosmological distances?

what is the role of magnetic fields in their propagation?

how to model all this?

recipes for astroparticle propagation

CR/Propa astroparticle simulation framework: CRPropa

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142 Alves Batista et al. PoS (ICRC2021) 978. arXiv:2107.01631

- publicly available Monte Carlo code
- modular structure
- propagation of cosmic rays, gamma rays, neutrinos
- galactic and extragalactic propagation
- modular structure
- parallelisation with OpenMP
- development on Github: <u>https://</u> <u>github.com/CRPropa/CRPropa3</u>
- CRPropa 3.2 coming out very soon!

CR/Propa

18

CRPropa: propagation modes

cosmological radiation fields

CRPropa: interactions and energy losses

CR/Propa

CR/Propa

CRPropa: magnetic fields

constraining IGMFs with high-energy gamma rays

22

intergalactic magnetic fields (IGMFs)

gamma-ray propagation and IGMFs

observational strategies

strategy 1: point-like sources will appear extended

strategy 2: secondary gamma rays will arrive with time delays

strategy 3: combination of 1 and $2 \rightarrow$ spectral changes

IGMF constraints with gamma rays

Rafael Alves Batista | NPAC Seminar | December 16, 2021 | Multimessenger astrophysics & intergalactic magnetic fields

gamma-ray constraints on IGMFs

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

the effect of helicity

Alves Batista, Saveliev, Sigl, Vachaspati. PRD 94 (2016) 083005. arXiv:1607.00320

most common method for probing IGMFs in the voids

common shortcomes:

- . simplified treatment of particle interactions;
- . intrinsic source spectrum is fixed (should be inferred together with IGMF) . oversimplified IGMF models
- other possible problems: plasma instabilities may quench the electromagnetic cascades

constraining IGMFs with ultra-high-energy cosmic rays

IGMF constraints from UHECRs

van Vliet, Palladino, Taylor, Winter. MNRAS (2021). arXiv:2104.05732

IGMF constraints from UHECRs

van Vliet, Palladino, Taylor, Winter. MNRAS (2021). arXiv:2104.05732

Rafael Alves Batista | NPAC Seminar | December 16, 2021 | Multimessenger astrophysics & intergalactic magnetic fields

cosmic-ray signatures of helical IGMFs

Alves Batista & Saveliev. JCAP 03 (2019) 011. arXiv:1808.04182

UHECRs can be used to constrain helicity

general > select UHECR sources at approximately the same distance from Earth

- perform harmonic analysis
 - ▶ dipole direction (ϕ_d) → sign of the helicity;
 - ▶ dipole-to-quadrupole ratio (r) \rightarrow absolute value

idea

cosmic-ray signatures of helical IGMFs

Alves Batista & Saveliev. JCAP 03 (2019) 011. arXiv:1808.04182

UHECR sources are unknown

general constraints shortcomes:

. variations in the relative contribution of each UHECR source may interfere with result

. other propagation uncertainties (interactions) are correlated with IGMF constraints

helicity constraints shortcomes:

- . toy model with simple single-mode magnetic fields
- . for realistic fields anisotropy patterns might vanish

gamma rays + neutrinos

a multimessenger method for constraining IGMFs

TXS 0506+056: the first cosmic neutrino source

(possibly)

IceCube Collaboration. Science 361 (2018) 147. arXiv:1807.08794

36

IceCube Collaboration. Science 361 (2018) eaat1378. arXiv:arXiv:1807.08816
TXS 0506+056: the first cosmic neutrino source

IceCube Collaboration. Science 361 (2018) 147. arXiv:1807.08794

37

IceCube Collaboration. Science 361 (2018) eaat1378. arXiv:arXiv:1807.08816

constraining IGMFs with TXS 0506+056

Alves Batista, Saveliev. ApJL 902 (2020) L11. arXiv:2009.12161 Saveliev, Alves Batista. MNRAS 500 (2021) 2188. arXiv:2009.09772

general idea neutrino flare could emit high-energy gamma rays

- high-energy gamma rays are attenuated by the EBL
- cascade component retains information of primary spectrum

intrinsic gammaray spectrum $\frac{dN}{dE} = J_0 \left[E^{-\alpha_l} \exp\left(-\frac{E}{E_{max,l}}\right) + \eta E^{-\alpha_h} \exp\left(-\frac{E}{E_{max,h}}\right) \right]$ (phenomenological model = how it appears)

IGMFs and TXS 0506+056: cascade component

Alves Batista, Saveliev. ApJL 902 (2020) L11. arXiv:2009.12161

Saveliev, Alves Batista. MNRAS 500 (2021) 2188. arXiv:2009.09772

is there a cascade contribution?

MAGIC observes 400 GeV events

IGMFs and TXS 0506+056: time delays

Alves Batista, Saveliev. ApJL 902 (2020) L11. arXiv:2009.12161

IGMFs and TXS 0506+056: fitting the data

Alves Batista, Saveliev. ApJL 902 (2020) L11. arXiv:2009.12161

IGMFs and TXS 0506+056: fitting the data

Alves Batista, Saveliev. ApJL 902 (2020) L11. arXiv:2009.12161

constraining IGMFs with TXS 0506+056

Alves Batista, Saveliev. ApJL 902 (2020) L11. arXiv:2009.12161

IGMF effects on TXS 0506+056: maximum gamma-ray energy

motivation for this talk

a note on neutrinos and IGMFs

on the importance of magnetic fields for multimessenger studies

how to enrich the science case of a neutrino telescope?

(source) neutrino--gamma-ray correlations

time delays and angular correlations between a source emitting neutrinos and gamma rays simultaneously depend on IGMFs

(cosmogenic) neutrino-UHECR correlations

time delays and angular correlations between UHECRs and cosmogenic neutrinos depend on IGMF (and GMF)

IGMFs: "free lunch" for neutrino and gamma-ray observatories

concluding remarks

Rafael Alves Batista | NPAC Seminar | December 16, 2021 | Multimessenger astrophysics & intergalactic magnetic fields

summary and outlook

- we know next to nothing about IGMFs
- common methods to constrain IGMFs still leave a large portion of the parameter space open
- Jamma rays (through electromagnetic cascades) and UHECRs are valuable high-energy probes of IGMFs
- properties of magnetic fields such as helicity are often neglected and may severely interfere with the results of analyses
- IGMFs (specifically in the intracluster medium) are determinant for the neutrino and gamma-ray fluxes produced by galaxy clusters
- In multimessenger studies require knowledge of intervening magnetic fields OR these fields have to be shown to be small
- can we draw unambiguous conclusions from multimessenger studies with neutrinos + HE gamma rays or neutrinos and UHECRs? NO!! (unless IGMFs are shown to be negligible)

back-up slides

interactions

53

electromagnetic interactions

constraining IGMFs with TXS 0506+056

constraining IGMFs with TXS 0506+056

Alves Batista, Saveliev. ApJL 902 (2020) L11. arXiv:2009.12161

EBL	$\Delta t_{ m AGN} ~[m yr]$	$\log(L_{ m c}/{ m Mpc})$	$\log(B/{ m G})$
S161	10^{1}	$1.0^{+1.3}_{-1.6}$	$-15.3^{+1.0}_{-2.7}$
S16l	10^4	$1.0^{+1.3}_{-1.6}$	$-15.2\substack{+0.9\\-2.7}$
S16l	10^{7}	$1.0^{+1.3}_{-1.6}$	$-15.2\substack{+0.9\\-2.7}$
S16u	10^1	$0.2^{+2.1}_{-1.6}$	$-15.4^{+1.1}_{-2.5}$
S16u	10^4	$0.0^{+2.4}_{-1.4}$	$-15.2\substack{+0.9\\-2.3}$
S16u	10^{7}	$-0.1^{+2.3}_{-1.3}$	$-15.2\substack{+0.9\\-2.6}$
G12	10^1	$0.5^{+1.6}_{-1.7}$	$-15.8^{+1.3}_{-2.4}$
G12	10^4	$0.6\substack{+1.6 \\ -1.7}$	$-15.6\substack{+1.2\\-2.6}$
G12	10^{7}	$0.6\substack{+1.6 \\ -1.7}$	$-15.6\substack{+1.2 \\ -2.6}$
D11	10^1	$0.2^{+1.5}_{-1.3}$	$-15.4^{+1.0}_{-2.5}$
D11	10^4	$0.1^{+1.5}_{-1.3}$	$-15.3^{+1.0}_{-2.6}$
D11	10^{7}	$0.1^{+1.5}_{-1.3}$	$-15.3^{+1.0}_{-2.6}$

fitting the low-state of TXS 0506+056

Alves Batista, Saveliev. ApJL 902 (2020) L11. arXiv:2009.12161 Saveliev, Alves Batista. MNRAS 500 (2021) 2188. arXiv:2009.09772

▶ for the low state, we keep only pairs of (α_l , $E_{max,l}$) for which the p-values are < 10⁻³

▶ in any case, α_l = 2.2 and $E_{max,l} \le 250$ GeV does not vary significantly

a complete example

Alves Batista, Saveliev. ApJL 902 (2020) L11. arXiv:2009.12161

Saveliev, Alves Batista. MNRAS 500 (2021) 2188. arXiv:2009.09772

Rafael Alves Batista | NPAC Seminar | December 16, 2021 | Multimessenger astrophysics & intergalactic magnetic fields

helical IGMFs

evidence for helical IGMFs?

UHECR constraints on the helicity of IGMFs

cosmic-ray signatures of helical IGMFs: analysis method

cosmic-ray signatures of helical IGMFs: skymaps

Alves Batista & Saveliev. JCAP 03 (2019) 011. arXiv:1808.04182

toy model: single-mode field is likely not realistic

single-mode field + hand-picked sources responsible for "artificial" pattern

constraints for UHE nuclei

predictions: numerical simulations vs. theory

effects of the galactic magnetic field

- we apply rotations to the default scenario (0)
- apply lensing technique to correct for the GMF
- we use the GMF model by Jansson & Farrar (2012)

scenario	a [deg]	β [deg]	γ [deg]
0	0	0	0
1	-90	0	0
2	0	0	90
3	150	0	60

including the effects of the galactic magnetic field

cosmic-ray signatures of helical IGMFs

Alves Batista & Saveliev. JCAP 03 (2019) 011. arXiv:1808.04182

Rafael Alves Batista | NPAC Seminar | December 16, 2021 | Multimessenger astrophysics & intergalactic magnetic fields

the galactic magnetic field

UHECRs and the galactic magnetic field

- widely-used GMF model: Jansson & Farrar '12 (JF12)
- this model is based on fits of synchrotron emission + Faraday rotation + polarisation measurements, but needs improvements!

UHECRs and the galactic magnetic field

Centaurus A: assuming only galactic deflections and the complete JF12 field

do plasma instabilities compromise IGMF constraints?
the missing haloes "problem"

THE ASTROPHYSICAL JOURNAL, 868:87 (17pp), 2018 December 1 © 2018. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/aae5f2

Missing Gamma-Ray Halos and the Need for New Physics in the Gamma-Ray Sky

Avery E. Broderick^{1,2}, Paul Tiede^{1,2}, Philip Chang³, Astrid Lamberts⁴, Christoph Pfrommer⁵, Ewald Puchwein⁶, Mohamad Shalaby^{1,2,5,7}, and Maria Werhahn^{5,8}

¹ Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada; abroderick@perimeterinstitute.ca
 ² Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON, N2L 2Y5, Canada; ptiede@perimeterinstitute.ca
 ³ Department of Physics, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA; chang65@uwm.edu
 ⁴ Theoretical Astrophysics, Mail Code 350-17, California Institute of Technology, Pasadena, CA 91125, USA; lamberts@caltech.edu
 ⁵ Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany; cpfrommer@aip.de
 ⁶ Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK; puchwein@ast.cam.ac.uk
 ⁷ Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA; mshalaby@perimeterinstitute.ca
 ⁸ Department of Astronomy and Astrophysics, Berlin Institute of Technology, Hardenbergstrae 36, D-10623 Berlin, Germany
 Received 2018 August 8; revised 2018 September 29; accepted 2018 October 1; published 2018 November 26

Abstract

An intergalactic magnetic field (IGMF) stronger than 3×10^{-13} G would explain the lack of a bright, extended degree-scale, GeV-energy inverse Compton component in the gamma-ray spectra of TeV blazars. A robustly predicted consequence of the presence of such a field is the existence of degree-scale GeV-energy gamma-ray halos (gamma-ray bow ties) about TeV-bright active galactic nuclei, corresponding to more than half of all radio galaxies. However, the emitting regions of these halos are confined to and aligned with the direction of the relativistic jets associated with gamma-ray sources. Based on the orientation of radio jets, we align and stack corresponding degree-scale gamma-ray images of isolated Fanaroff–Riley class I and II objects and exclude the existence of these halos at overwhelming confidence, limiting the intergalactic field strength to $<10^{-15}$ G for large-scale fields and progressively larger in the diffusive regime when the correlation length of the field becomes small in comparison to 1 Mpc. When combined with prior limits on the strength of the IGMF, this excludes a purely magnetic explanation for the absence of halos. Thus, it requires the existence of novel physical processes that preempt the creation of halos, e.g., the presence of beam-plasma instabilities in the intergalactic medium or a drastic cutoff of the very high-energy spectrum of these sources.

Key words: BL Lacertae objects: general – gamma rays: diffuse background – gamma rays: general – infrared: diffuse background – plasmas – radiation mechanisms: nonthermal

plasma instabilities in the intergalactic medium

collective plasma phenomena: relevant if $n_{beam}\lambda_{pl}^3 \gg 1$ skin depth: $\lambda_{pl} = \frac{2\pi c}{\omega_{pl}}$ with $\omega_{pl} = \sqrt{\frac{e^2 n_{IGM}}{\varepsilon_0 m_e}}$

- ▶ plasma instabilities may quench electromagnetic cascades → IGMF constraints unreliable(?) [Broderick+ 2012; Sironi & Giannios 2014; Schlickeiser+ 2012; Vafin+2018]
- the dominant instability determines if this effect affects the spectra of TeV blazars
- ▶ for instance, non-linear Landau damping may dominate → plasma instabilities do not play a significant role [Miniati & Elyiv 2013]
- ► IGMF constraints do not change strongly even if (the oblique) instabilities act → lower limit on B changes by ~ 10 [Yan+ 2019]
- Instabilities may not compromise IGMF constraints, depending on the blazar spectrum and IGM parameters [Alves Batista+ 2019]

Broderick et al. ApJ 752 (2012) 22. <u>arXiv:1106.5494</u> Schlickeiser et al. ApJ 758 (2012) 102. Miniati & Elyiv. ApJ 770 (2013) 54. <u>arXiv:1208.1761</u> Sironi & Giannios. ApJ 787 (2014) 49. <u>arXiv:1312.4538</u> Vafin et al. ApJ 857 (2018) 43. <u>arXiv:1803.02990</u> Yan et al. ApJ 870 (2019) 70. <u>arXiv:1810.07013</u> Alves Batista, Saveliev, de Gouveia Dal Pino. <u>arXiv:1904.13345</u>

propagation of electromagnetic cascades: plasma instabilities

Alves Batista, Saveliev, de Gouveia Dal Pino. MNRAS 489 (2019) 3836. arXiv:1904.13345

model A: Broderick et al. ApJ 752 (2012) 22. arXiv:1106.5494
model B: Miniati & Elyiv. ApJ 770 (2013) 54. arXiv:1208.1761
model C: Schlickeiser et al. ApJ 758 (2012) 102.
model D: Sironi & Giannios. ApJ 787 (2014) 49. arXiv:1312.4538
model E: Vafin et al. ApJ 857 (2018) 43. arXiv:1803.02990

plasma instabilities depend on the temperature and density of intergalactic medium, and on the luminosity of the blazar beam

general idea

- effect can be approximated as a cooling term for electrons
- **grplinst:** a CRPropa plugin to account for plasma instability effects on gamma-ray propagation https://github.com/rafaelab/grplinst

plasma instabilities quenching factors

Alves Batista, Saveliev, de Gouveia Dal Pino. MNRAS 489 (2019) 3836. arXiv:1904.13345

Rafael Alves Batista | NPAC Seminar | December 16, 2021 | Multimessenger astrophysics & intergalactic magnetic fields

effects on the spectrum of TeV blazars

Alves Batista, Saveliev, de Gouveia Dal Pino. MNRAS 489 (2019) 3836. arXiv:1904.13345

Rafael Alves Batista | NPAC Seminar | December 16, 2021 | Multimessenger astrophysics & intergalactic magnetic fields