# astroparticle probes of quantum gravity : cosmological propagation uncertainties

Workshop on Theoretical and Experimental Advances in Quantum Gravity COST Action CA18108 01-03 September 2022 Belgrade, Serbia

### **Rafael Alves Batista**

### Instituto de Física Teórica (IFT UAM-CSIC) Universidad Autónoma de Madrid

<u>rafael.alvesbatista@uam.es</u>
 www.8rafael.com



### propagation of high-energy cosmic messengers

- ultra-high-energy cosmic rays (UHECRs)
- gamma rays +

### phenomenological observables

- particle fluxes
- time delays
- conclusions & outlook

### overview of this talk



$$p + \gamma_{bg} \rightarrow p + \pi^{0}$$

$$p + \gamma_{bg} \rightarrow n + \pi^{+}$$

$$\pi^{0} \rightarrow \gamma + \gamma$$

$$\pi^{+} \rightarrow v_{\mu} + \mu^{+}$$

$$\mu^{+} \rightarrow e^{*} + v_{e} + \underline{v}_{\mu}$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A, Z) + \gamma$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A, Z) + \gamma_{bg} \rightarrow nucleus(A-1, Z-1) + n$$

$$nucleus(A-1, Z-1) +$$

## (intergalactic) propagation picture







## cookbook for astroparticle transport











ba

$$E_i^2 = m_i^2 + p_i^2 + \sum_{n=0}^{\infty} \delta_{i,n} p_i^{n+2}$$
$$\delta_{i,n} = \frac{\eta_n}{M_{\text{QG},n}}$$

## propagation ingredients: interactions

### sensitive to QG effects





## propagation ingredients: photon fields



## propagation ingredients: cosmic magnetic fields



![](_page_6_Picture_8.jpeg)

## propagation ingredients: cosmic magnetic fields

Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

![](_page_7_Figure_2.jpeg)

![](_page_7_Picture_6.jpeg)

gamma rays

![](_page_8_Picture_5.jpeg)

## gamma rays: interactions during cosmological propagation

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_4.jpeg)

![](_page_9_Picture_6.jpeg)

![](_page_9_Figure_7.jpeg)

|  | _ |  |  |
|--|---|--|--|
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |

![](_page_9_Picture_10.jpeg)

## gamma rays: modification of interaction thresholds by QG

QG: 
$$E_{\gamma}^2 = p_{\gamma}^2 \left[ 1 + \sum_{n=1}^{\infty} \eta_{\gamma,n} \left( \frac{E_{\gamma}}{E_{QG}} \right)^n \right]$$

![](_page_10_Figure_3.jpeg)

Terzic et al. Universe 7 (2021) 345. arXiv:2109.09072

![](_page_10_Picture_8.jpeg)

## gamma rays: Lorentz invariance violation and time delays

### question: how can we constrain LIV using gamma-ray observations?

![](_page_11_Figure_2.jpeg)

![](_page_11_Figure_5.jpeg)

### do time delays give truly meaningful constraints on LIV?

![](_page_11_Picture_7.jpeg)

### information about the source flux $\Phi_{o}(E_{o};z_{s}) = \Phi_{s}(E_{o,s}) \exp\left[-\tau(E_{o},z_{s})\right]$ attenuation

### how good is this approximation?

simulations performed with **CR**/Propa

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142

Alves Batista et al. arXiv:2208.00107

## gamma rays: intrinsic spectrum uncertainties

![](_page_12_Figure_9.jpeg)

![](_page_12_Picture_11.jpeg)

![](_page_12_Figure_12.jpeg)

![](_page_12_Figure_13.jpeg)

## gamma rays: intrinsic spectrum uncertainties and constraints on LIV

CTA Consortium. JCAP 02 (2021) 048. arXiv:2010.01349

![](_page_13_Figure_2.jpeg)

Sep 1 2022 Astroparticle probes of quantum gravity: cosmological propagation uncertainties

![](_page_13_Picture_6.jpeg)

### Alves Batista & Saveliev. Universe 7 (2021) 223. arXiv:2105.12020

![](_page_14_Figure_2.jpeg)

## gamma rays: QG signatures through time delays

Sep 1 2022 | Astroparticle probes of quantum gravity: cosmological propagation uncertainties

![](_page_14_Picture_7.jpeg)

![](_page_14_Figure_8.jpeg)

![](_page_15_Figure_1.jpeg)

Alves Batista et al. arXiv:2208.00107

### how to connect QG phenomenology with observations?

- given a set of gamma-ray observations, what can we really say about QG effects (with confidence)? observables: arrival directions, arrival times, fluxes
- - e sources are generally known
  - where the second sec
  - good statistics ...
  - IGMFs affect all observables
  - ...

## gamma rays: probing QG phenomenology

physics is known  $\rightarrow$  we can just build better models and cover the whole parameter space

![](_page_16_Picture_13.jpeg)

![](_page_17_Picture_0.jpeg)

UHECRS

![](_page_17_Picture_5.jpeg)

## **UHECRs:** interactions during cosmological propagation

![](_page_18_Figure_1.jpeg)

 $s = m^2 + 2E\varepsilon(1 - \beta\cos\theta)$  $s = (m_p + m_\pi)^2 \simeq m^2 + 2E_p \varepsilon_{\text{CMB}}$  $E_{\rm GZK} \simeq 6 \ {\rm EeV} \equiv 6 \times 10^{19} \ {\rm eV}$ 

### photopion production

 $p + \gamma_{bg} \rightarrow p + \pi^0$  $\pi^0 \rightarrow \mathbf{v} + \mathbf{v}$  $\pi^+ \rightarrow v_{\mu} + \mu^+$  $p + \gamma_{bg} \rightarrow n + \pi^+$  $\mu^+ \rightarrow e^+ + v_e + v_\mu$ *(similar for nuclei)* 

### **Bethe-Heitler pair production**

nucleus(A, Z) +  $\gamma_{bg} \rightarrow$  nucleus(A, Z) +  $e^-$  +  $e^+$ 

### photodisintegration

nucleus(A,Z) +  $\gamma_{bg} \rightarrow$  nucleus(A-1,Z) + n nucleus(A,Z) +  $\gamma_{bg} \rightarrow$  nucleus(A-1,Z-1) + p ...

### nuclear decays

nucleus(A,Z)  $\rightarrow$  nucleus(A-4,Z-2) +  $\alpha$ nucleus(A,Z)  $\rightarrow$  nucleus(A,Z+1) +  $e^{-}$  +  $v_{e}$ nucleus(A,Z)  $\rightarrow$  nucleus(A,Z-1) +  $e^{-+}$  +  $v_e$ nucleus(A,Z)\*  $\rightarrow$  nucleus(A,Z) +  $\gamma$ 

![](_page_18_Picture_13.jpeg)

![](_page_18_Picture_14.jpeg)

## **UHECRs: modification of interaction thresholds by QG**

Pierre Auger Collaboration. JCAP 01 (2022) 023. arXiv:2112.06773

![](_page_19_Figure_2.jpeg)

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

## **UHECRs: modification of interaction thresholds by QG**

Pierre Auger Collaboration. JCAP 01 (2022) 023. arXiv:2112.06773

![](_page_20_Figure_2.jpeg)

### photodisintegration

nucleus(A,Z) +  $\gamma_{bg} \rightarrow$  nucleus(A-1,Z) + n nucleus(A, Z) +  $\gamma_{bg} \rightarrow$  nucleus(A-1, Z-1) + p ...

![](_page_20_Picture_7.jpeg)

### is the GZK effect is one of the best observables to search for QG effects?

![](_page_21_Figure_1.jpeg)

Alves Batista et al. Front. Astron. Space. Sci. 6 (2019) 23. arXiv:1903.06714

## **UHECRs: the GZK effect and the QG scale**

### necessary conditions

- UHECR sources are known (or incredibly high statistics) significant fraction of protons above the GZK threshold
- no other spectral effect that mimics the GZK suppression

![](_page_21_Picture_10.jpeg)

![](_page_21_Figure_11.jpeg)

![](_page_22_Figure_0.jpeg)

$$\delta \simeq \begin{cases} 0.05^{\circ}Z\left(\frac{E}{100 \text{ EeV}}\right)^{-1}\left(\frac{B}{nG}\right)\left(\frac{D}{Mpc}\right) & \text{if } D \ll L_B \\ 0.05^{\circ}Z\left(\frac{E}{100 \text{ EeV}}\right)^{-1}\left(\frac{B}{nG}\right)\left(\frac{D}{Mpc}\right)^{\frac{1}{2}}\left(\frac{L_B}{Mpc}\right)^{\frac{1}{2}} & \text{if } D \gg L_B \end{cases}$$

deflections

## **UHECRs: deflections in magnetic field**

- Sigl et al. 2003
- Dolag et al. 2004
- Das et al. 2008
- Kotera and Lemoine 2009 (I)
- Kotera and Lemoine 2009 (I) \_\_\_\_
- Kotera and Lemoine 2009 (I) \_\_\_\_
- Hackstein et al. 2018 (astro) ----
- Hackstein et al. 2018 (astroR) . . . . . . .
- Hackstein et al. 2018 (prim)
- Hackstein et al. 2018 (prim2R) \_ \_ \_
- --- Hackstein et al. 2018 (prim3R)
- Alves Batista et al. 2017 (run F)
- Alves Batista et al. 2017 (run L) \_\_\_\_
- Alves Batista et al. 2017 (run S) \_\_\_\_
- Alves Batista et al. 2017 (run O)

### deflections are completely uncertain (they can be huge)

![](_page_22_Picture_23.jpeg)

### how to connect QG phenomenology with observations?

- given a set of UHECR observations, what can we really say about QG effects (with confidence)?
  - UHECR observables: spectrum, composition, arrival directions
  - cannot infer composition of individual CRs (+ air-shower physics is complicated)
  - sources are unknown
  - parameter space is huge to be fully covered
- modified interaction thresholds  $\rightarrow$  changes fluxes of **cosmogenic neutrinos and photons** 
  - + Bow to distinguish cosmogenic fluxes from other contributions?

## **UHECRs: probing QG phenomenology**

![](_page_23_Picture_11.jpeg)

![](_page_24_Picture_3.jpeg)

![](_page_24_Picture_5.jpeg)

![](_page_25_Figure_1.jpeg)

### exploit the combined constraints of all messengers *simultaneously*

Alves Batista et al. Front. Astron. Space. Sci. 6 (2019) 23. arXiv:1903.06714

## the way forward: multimessenger approach

![](_page_25_Picture_8.jpeg)

- uncertainties in astroparticle propagation pose severe difficulties in detecting QG signatures with the current state of the art, claims of detection and some constraints should critically
- examined
- $\blacktriangleright$  UHECRs are complicated on their own  $\rightarrow$  (my unpopular opinion) do not seem a promise road for successfully finding QG effects (at the moment)
- electromagnetic cascades might spoil searches for QG signals using gamma rays  $\rightarrow$  but they can be accounted for
- can we really detect QG signatures using high-energy cosmic messengers in the near future?
  - true multimessenger studies can validate/exclude the oversimplified models employed today
  - (the devil is in the details)

![](_page_26_Picture_9.jpeg)

![](_page_27_Picture_1.jpeg)

![](_page_27_Picture_2.jpeg)

## acknowledgements

![](_page_27_Picture_6.jpeg)

![](_page_27_Picture_9.jpeg)