leptonic and hadronic models with CRPropa: the case of Sgr A*

Workshop on Numerical Multimessenger Modelling **27 February 2023** Bochum

Rafael Alves Batista

Instituto de Física Teórica (IFT UAM-CSIC) Universidad Autónoma de Madrid

rafael.alvesbatista@uam.es

www.8rafael.com

@8rafael

the galactic centre region

SgrA*: the black hole

a glimpse into SgrA* particle acceleration via magnetic reconnection

Khiali, de Gouveia Dal Pino, Sol. Phys. Rev. Lett. 108 (2012) 241102.

magnetic reconnection in accreting systems

magnetic reconnection in accreting systems

Kowal et al. Phys. Rev. Lett. 108 (2012) 241102. Pseudocolor Var: curlb_magnitude 4.000 -0.1591 -10 0.006325-0.0002515-1.000e-05— Max: 0.03494 Min: 0.000 Pseudocolor Var: Bfield_magnitude 0.01000 -(GM/ 0 -0.007503-N 0.005005-0.002508-1.000e-05-Max: 0.003370 Min: 0.000 -10 Scatter Var: xpos, ypos Scatter Var: xpos, ypos -20 -10 -20

Kowal, de Gouveia Dal Pino, Lazarian. Phys. Rev. Lett. 108 (2012) 241102.

particle acceleration via magnetic reconnection

H.E.S.S. Collaboration. Nature 531 (2016) 476.

a gamma-ray view of the galactic centre

model building: high-energy emission by Sgr A* simulation of the environment particle propagation

gas density & magnetic fields

- general-relativistic MHD simulation
- ► HARM code

radiative transfer

- provides the photon background: synchrotron, IC, leptonic emission
- grmonty code

"multi-zone" lepto/hadronic models

pp & py interactions

- CRs accelerated via magnetic reconnection
- interactions with environment
- CRPropa code

Rodríguez-Ramírez, de Gouveia Dal Pino, Alves Batista. ApJ 879 (2019) 06. arXiv:1904.05765

GRMHD simulations of the accretion flow

defining the target photon field for the simulations

the CRPropa multimessenger framework

Alves Batista et al. JCAP 05 (2016) 038. arXiv:1603.07142 Alves Batista et al. JCAP 09 (2022) 035. arXiv:2208.00107

- publicly available Monte Carlo code
- propagation of high-energy cosmic rays, gamma rays, neutrinos, and electrons
- Galactic and extragalactic propagation
- modular structure
- parallelisation with OpenMP
- development on Github: https://github.com/CRPropa/CRPropa3

the CRPropa framework

towards a unified framework for (ultra-)high-energy multimessenger studies

Rafael Alves Batista | Feb 27, 2023 | Leptonic and hadronic models with CRPropa: the case of Sgr A*

the CRPropa framework: interactions

simulating the propagation of particles neutrino and gamma-ray emission

cosmic rays: injection and propagation

propagation ingredients: interactions

where f depends on the Lorentz factor, Alfvén velocity, and viscosity

Model	$\langle \dot{M}_{ m acc} angle imes 10^{-7} \left(M_\odot { m yr}^{-1} ight)$	T_p/T_e	$W_{\rm CR} \times 10^{37} ({\rm erg \ s^{-1}})$	$W_{\rm CR}/W_{\rm rec}$	κ	ϵ_{c}
m ₁₁	4.452	140	30	0.8	2.4	
m ₁₂	4.452	140	2	0.05	1.8	
m ₁₃	4.452	140	0.8	0.02	1.3	
m ₂₁	1.335	80	6.5	1.0	1.8	
m ₂₂	1.335	80	6	0.92	1.8	
m ₂₃	1.335	80	3	0.46	1.3	
m ₃₁	0.445	50	1.3	0.96	1.0	
m ₃₂	0.445	50	1.3	0.96	1.0	

CR injection model

$$10^{42} f\left(\frac{\left\langle \dot{M}_{acc}\right\rangle}{M_{\odot}\,\mathrm{yr}^{-1}}\right) \left(\frac{T_{p}}{T_{e}}\right) \ \mathrm{erg}\,\mathrm{s}^{-1}$$

-

Rodríguez-Ramírez, de Gouveia Dal Pino, Alves Batista. ApJ 879 (2019) 06. arXiv:1904.05765

neutrino emission from SgrA*

gamma-ray emission from SgrA*

H.E.S.S. Collaboration. Nature 531 (2016) 476.

gamma-ray emission from SgrA*

- we built a multi-zone model for SgrA*
- we assume acceleration via fast magnetic reconnection
- we simulate everything from first principles:
 - GRMHD simulation (magnetic field and gas density) → HARM code
 - \bullet radiate transfer (photon backgrounds) \rightarrow GRMONTY code
 - + hadronic and leptonic interactions \rightarrow CRPROPA code
- **CRPROPA:** multimessenger framework for high-energy studies
- ▶ for accretion rates > 10^{-7} M $_{\odot}$ /yr we can explain the VHE observations by H.E.S.S. if ~

0.5 PeV CRs are accelerated

these models can be readily tested with the Cherenkov Telescope Array once it is operating

conclusions and outlook

Rafael Alves Batista | Feb 27, 2023 | Leptonic and hadronic models with CRPropa: the case of Sgr A*

acknowledgements

collaborators

Elisabete de Gouveia Dal Pino Juan C. Rodríguez Ramírez

particle acceleration via magnetic reconnection

- magnetic reconnection provides a lot of power that can be used for particle acceleration
- may explain high-energy emission in systems with central black holes
- first-order Fermi acceleration is possible in magnetic reconnection sites
- energy gain: <ΔE/E>~vrec / c
- if the base of AGN jets is magneticallydominated, then reconnection may take place

gamma-ray emission profiles: curvature effects

Khiali, de Gouveia Dal Pino, Sol. Phys. Rev. Lett. 108 (2012) 241102.

magnetic reconnection in accreting systems

proton-proton cross section [Kafexhiu et al. 2014]

pion cross section & multiplicity

[Kafexhiu et al. 2014]

gamma-ray spectrum & multiplicity

[Kafexhiu et al. 2014]

scaling relation for lepton multiplicity

[Kelner et al. 2006]

pp interactions: implementation

Feb 27, 2023 I Leptonic and hadronic models with CRPropa: the case of Sgr A*

pp interactions: checks

Stochastic Differential Equations **3D** (galactic)

simple 1D

Rafael Alves Batista | Feb 27, 2023 | Leptonic and hadronic models with CRPropa: the case of Sgr A*

the CRPropa framework:

the CRPropa framework: magnetic fields

