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This course is designed to provide an introduction to the computational methods used to model

the propagation of high-energy cosmic messengers, namely cosmic rays, gamma rays, and neutrinos.

Students will learn about the physical processes that govern the propagation of these particles, as

well as the techniques used to describe their transport in astrophysical environments. Topics will

include the theory of astroparticle transport, the computational techniques commonly employed, and

specific codes used by the community. Also discussed will be the limitations of model-building and

the role of uncertainties in interpreting the results.

Warning: These notes are incomplete and will be updated over time. There most likely are many

typos and a few errors. Be careful when using them!
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1 Introduction

We are now at a unique moment to study the universe using all observational windows available.
Low-energy (E < 10'° eV) cosmic rays are being used to further constrain dark matter properties
with experiments such as the Alpha Magnetic Spectrometer [? |. High- (10'° eV < E < 108 V)
and ultra-high-energy cosmic rays (UHECRs), with £ > 108 eV, have given us a glimpse into the
mechanisms whereby particles are accelerated to energies well beyond the capabilities of particle
accelerators such as the Large Hadron Collider, providing further insights into the most extreme
processes in Nature [? ]. The lceCube Neutrino Observatory has detected dozens of high-energy
neutrinos unassociated to any known sources [? |, and few in probable coincidence with astrophysical
objects [? ]|. Imaging air Cherenkov telescopes such as MAGIC, H.E.S.S., and VERITAS have
discovered hundreds of sources of very-high-energy gamma rays (E 2 1 TeV) both in the Galaxy and
outside of it [? |. With the recent findings by LIGO we have witnessed the dawn of gravitational-wave
astronomy [? |.

To make sense of observations of this ecosystem of extreme cosmic accelerators shining bright
through the lenses of various messengers, it is important to understand how they travel to Earth,
which other particles they leave in their wake, and the countless obstacles they face during their jour-
ney. This is the purpose of the course on Computational Methods for Astroparticle Propagation
— possibly the first of its kind.

This preliminary set of lecture notes | attempt to condense much of what has to be considered
when modelling the transport of high-energy particles in the universe, namely cosmic rays (CRs),
gamma rays, and neutrinos.

| present the relevant theoretical background in §2. Computational methods for treating the
phenomena of interest considering this theoretical background are described in §3. In §4 a well-
known tool to model the propagation of high-energy astroparticles is described, the CRPropa code.

Throughout this text | try to stick with S.I. units', since Gaussian units are an aesthetic abom-
ination. | also attempt to perform calculations within the framework of special relativity (SR), as
it is more generic, deriving the non-relativistic cases from these more generic results. For pedagog-
ical reasons | also opt for “unnatural units”, writing Planck’s constant and speed of light explicitly

everywhere.

This is motivated by the fact that in electromagnetism Gaussian units are not rationalised, removing 47 factors
from where they belong (like Coulomb’s law). While Gaussian units sometimes make the equations look simpler, the
degree of confusion it causes should have made people abandon it altogether. | failt to see how this has not yet
happened.



2 The theory of particle propagation

Some particles do not propagate in a straightforward manner. In certain environments, they can be
considerably influenced by external factors such as magnetic fields or interactions with other particles.
These settings encompass intergalactic space, the vicinity of astrophysical objects, our own galaxy,
and even Earth’s atmosphere. The fundamental principles that describe these processes remain
consistent, regardless of the specific environment in which they take place. This section provides
a comprehensive overview of some of these principles, which are relevant for the propagation of

high-energy astroparticles.

2.1 Basic concepts

To describe how particles propagate, one ought to bear in mind that this process is often stochastic
in nature. Therefore, it is convenient to consider a collection of N identical particles and perform a
statistical treatment.

Figure 1: lllustration of an arbitrary volume with boundary 8S. The area element is dS = dSA,
where 71 is the unit vector normal to this element, and dV is the volume element.

Consider an arbitrary surface S with boundary labelled S, as shown in figure 1. An infinitesimally
small arbitrary volume element of S is represented by dV/. Similarly, the corresponding area element
is dS = dSA, wherein A is the unit vector normal to this surface. In the following sections some
notions building up on these geometrical considerations are discussed, in particular the concept of
flux.

2.1.1 Particle fluxes

The directional flux (¢) crossing the surface S at direction 0 is defined as the number of particles
(N) crossing the surface boundary 0S, per unit time (t), per unit solid angle (Q2):

d3N

¢(t'@):m- (1)

Note that the direction () is directly related to the solid angle. In fact, the solid angle element (d<2)

subtended by the surface element dS along the direction ¢ at a distance r is defined as

1
d2=dS (7-0) . (2)



The total flux (®), or simply flux, is the surface-integrated flux crossing a surface:
o(0)= [[esea). 3)
S

From eqgs. 1 and 3 it is possible to defined the corresponding energy-dependent fluxes. The
directional spectral flux (j) at an instant t is

oo de(te)  dN
(6.0 B) = —4F = JrdSdadE " (4)

Similarly, the spectral flux (j) crossing the surface S can be written as

jit.6)= 8. (5)

The number density of a distribution of particles is defined as

. d3N  dN dN
(=37 =3 " drds (6)

If the particles are moving with constant velocity ¥, then this equation reduces to

n(t) =

d2N 1
;q’- (7)

vdtdS

2.1.2 Cross sections

A generic process a + b — f characterises elastic scattering if the final state (f) is composed by
the same initial particles (a and b) and no other, which simply means they exchanged momentum
among themselves. In inelastic scattering the particles a and b are not necessarily part of the final
state f.

The total cross section (0tt) is defined as the sum of the cross sections for elastic (0¢j2) and
inelastic scattering (Oine):

Otot = Oela + Tine - (8)

Inelastic scattering lead, by definition, to the creation of secondary particles (¢): a+b—c+....
The inclusive cross section describes exactly this reaction, ignoring all other channels such as
a+b—d+ ..., and so on. In contrast, exclusive cross sections include all possible by-products
of the interaction: a+b—c+d+....

Inheriting from the mathematical formalism commonly employed in accelerator physics, it is
convenient to consider the laboratory frame. In this frame the notation / +t — f is simpler, wherein
I refers to the incident particles and t denotes the target; f still denotes an arbitrary final state, as
before. Now the cross section for this process can be defined as [? ]

1 dN¢
Ojtj—f = aw (9)

where ®; is defined as in eq. 3. The final state can take various values for the momentum (pr). This



is captured by the differential cross section:

d*oiyjnr 1 d*Ng
—=a =3 - (10)
d°pr ®; d°pr dt
Here the cross section is inclusive. The exclusive cross section for a process i +t — fi +fHh +...+ 1,
where j denotes the number of secondaries, can be written by a generalisation of the equation above:
d30i+ﬁﬂ+...+fj 1 d¥ N,

=— . 11
d*pr ®; d3py ... d*pg dt (1)

2.2 Interaction lengths

Now the problem at hand consists in finding out what is the probability that a particle will interact
after a given distance, considering the presence of targets that represent other particles. Classically,
considering a collection of target particles at rest in the laboratory frame, this probability is related to
the notion of cross section (o), which takes into account the amount of “free space” in a target that
would allow for an incident particle to cross. Therefore, the classical notion is purely geometrical,
similar to what was originally described by Ernest Rutherford in his well-known 1911 experiment [?
]

The classical notion of cross section has to be abandoned when treating quantum scattering.
Moreover, particles might not be all static, which makes the treatment more intricate. Henceforth
| will employ this broader definition, despite the fact that | will present a seemingly “semi-classical”
approach to formulate the problem and obtain a general solution.

The goal is to compute the interaction length (\) of a single particle with a target composed
of multiple particles after moving a distance r = |F] in the region where the targets are located,
bounded by a surface S (see figure 1). Essentially, this process can be written as /i +t — f, where,
again, ‘I' refers to the incident particles, ‘t" denotes the target particles, and ‘f' is a generic final
state. The infinitesimal displacement vector d’ can be written as d7 = Vdt. The directional unit
vector 7 = F/|F] can be decomposed into two components, a radial (§) and a directional (6) one:
7 = 0+ 0. Under the assumption of spherical symmetry, this simplifies to dr = vdt and 7 = §.

For simplicity, assume first that the incident particles are bundled together, all moving with
the same constant velocity (V), parallel to each other. This establishes a relationship between the
distance travelled (r) and time (t): V = r/t. Since the velocity is constant (by hypothesis), then
dr'= vdt. The incident particle crosses the boundary 8S and travel an infinitesimally tiny distance
dr = d|r] = vdt inside the volume defined by the surface S.

Consider the interaction between the incident and target particles: what fraction of the incident
particles will undergo interactions with the target particles within this volume? To answer this
question, the notion of cross section (o) is once again needed. An interplay between the number
density of target particles () and the characteristic length for interactions between the incident
and target particles ()\) defines the cross section: o = (n:A)~!. Note that this expression does not
provide the cross section for interactions between two particles. That comes from particle physics
considerations. In reality, it would be more appropriate to write it as A = (n;0)"!, since the
interaction length () is the quantity actually being calculated here.



For the generic process | + t — f, the spectral flux of incident particles (j;) will change by dj;

CIjicfrE) = —m0jte—r (Ei, Et) i(E) = —M(Ei, Er)si(Ei) = ¢r(Es) - (12)

Note the negative sign, which indicates that the incident flux is attenuated due to interactions with
the target. This equation, however, is oversimplified. The target number density can be energy-
dependent, and the cross section can be a function of both the incident and target energies and the
geometry. This implies ny = n(Et) and 0 = o(Ey, Ej, y), wherein y denotes the fraction of the
primary's energy retained after the scattering. This can be written as

oo oo 1
do(E)

= - dEidEidy n(Ei) o(E, Ei, y)$(Ei) . (13)
/]

2.3 Kinematics of two-body interactions

The interaction between two particles can be modelled within the framework of (special-)relativistic
kinematics.

Consider an interaction between any two particles ‘1’ and ‘2" with masses m; and mo, respectively.
Their four-vectors are P, = (E1/c, p1) and P> = (Ez/c, p2), wherein E denotes the energy and p
the momentum in the /aboratory frame.

The squared centre-of-mass energy (s = EQM) is a relativistic invariant. For the centre-of-mass,
this invariant reads

s=E3y=(E1+E)* — (L + pr)° 2, (14)

which reduces to
s= mfc4+mgc4+2E1E2(1—[31[32c050) . (15)

Here B = v/c refers to the speed of the particle, and 0 is the angle (in the lab frame) between the
two particles.

A remarkable feature of equation 15 is that it does not depend on the outcomes of the process
of interest. It can be used generically for any two particles.

2.4 Targets for interactions

2.4.1 Cosmological radiation fields

The universe is permeated with radiation covering a wide frequency range of the electromagnetic
spectrum. This radiation may be the integrated diffuse signal resulting from structure formation
processes, like the extragalactic background light (EBL) and the cosmic radio background (CRB),
or a relic of some primeval process, as the cosmic microwave background (CMB). These three back-
grounds are the most important ones when it comes to modelling the propagation of astroparticles
over cosmological distances.

A general overview of the energy density of the different backgrounds is shown in figure 2. Note
that, while this figure refers to redshift z = 0, these models can differ considerably at higher redshifts.

There are other radiation fields that may impact particle propagation. For instance, in the Milky
Way the interstellar radiation field (ISRF) plays an important role for the propagation of Galactic
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Figure 2: Spectral number density of photons for different backgrounds: CMB (dotted), EBL (solid),
and CRB (dashed lines). Different colours indicate the different backgrounds. Bandas encompass

cosmic rays (GCRs) and very energetic photons.

2.4.1.1 Cosmic microwave background (CMB)

The CMB is the most well-understood among the extragalactic diffuse radiation backgrounds. It is
a black body of temperature T.mp with energy density

dn(e) €2 (1+2)? (16)
= 2312
de m2c3h eXp<kB7€cmb>_1

where ¢ is the photon energy, kg is Boltzmann’s constant, and T, the CMB temperature. The
temperature evolves with redshift (z) as

Tcmb(z) = Tcmb(O) (1 + Z) ' (17)

where Temp(0) &~ 2.73 K [? ]. The density of CMB photons today is ~ 4 x 108 m~3.

2.4.1.2 Extragalactic background light (EBL)

The EBL encompasses electromagnetic radiation ranging from infrared to ultraviolet. Unlike the
CMB, which evolved virtually undisturbed since the matter-radiation decoupling in the early Universe,
the EBL is affected by several processes, in particular, energy released during structure formation. In
fact, it is fair to view it as a calorimeter of sorts, since it results from the energy released into the
IGM throughout cosmic history, especially at early times, with absorption by dust and subsequent



re-emission at longer wavelengths [? 7 7 |.

Given its importance for understanding structure formation [? ], as well as for gamma-ray [? ?
| and UHECR propagation [? ? |, new EBL models are constantly being developed [? 2 2 7 7 7 ?
?77]

At optical wavelengths, the diffuse background is poorly known due to intrinsic difficulties in
removing foregrounds such as Galactic emission and zodiacal light (see, e.g., [? ? ] for in-depth
discussions). There are some measurements of the optical background [? ? ], but the most reliable
results were delivered by probes in the outer Solar System [? ? ? |. The integrated contribution
of the light emitted by galaxies and stars, as well as by extragalactic gas, respond for a significant
fraction of this flux. Nevertheless, a part of it remains unexplained [? ? ].

Some EBL models encompass part of the ultraviolet region of the electromagnetic spectrum,
which is at the threshold of what is physically relevant for understanding how astroparticles propagate.
This emission can be attributed in part to dust-scattered light emitted by hot objects (for reviews,
see refs. [? ? ]). However, this mechanism does not respond for all of the measured ultraviolet
background, and the debate is ongoing [? 7 ? 2 7 ].

2.4.1.3 Cosmic radio background (CRB)

The CRB is an important ingredient to model the propagation of ultra-high energy (UHE) particles,
despite being often overlooked. For reviews, the reader is referred to, e.g., refs. [? ? ? ]. It is mostly
dominated by radio emission from normal, radio, and starburst galaxies [? ? ]. Observations by
ARCADE?2 [? | revealed an unexpected excess in this background, at frequencies between 22 MHz
and 10 GHz, which does not fit the previous picture. A number of interpretations for this anomaly
were suggested [? 7 ? ? 7 | (butsee [? ? ]). CRB models commonly used to study the propagation
of UHE particles include the one by Protheroe & Biermann [? ], recently updated by Nitu et al. [? ].

2.5 Magnetic fields

Magnetic fields are an essential ingredient to make sense of astrophysical observations of high-energy
particles, especially in the multimessenger context. For this reason, this section provides a somewhat
detailed description of them.

The properties of cosmic magnetic fields across the universe can be very different depending
on where they are located. Nevertheless, the fact is that they are truly ubiquitous, being present
everywhere. They can be regular or stochastic in different environments. While the former is easier
to be grasped intuitively, the later requires some mathematical formalism, introduced in §2.5.1.
Sections §2.5.2 and §2.5.3 briefly describe the properties of these fields at intergalactic and Galactic
scales, respectively. The detailed description of the motion of charged particles in magnetic fields is
provided in §2.5.4.

2.5.1 Characterisation of stochastic magnetic fields

Stochastic magnetic fields are characterised by the associated probability distribution functions of a
field B. They can be described by means of statistical averages of the relevant observables. They
are often modelled as a zero-mean Gaussian random field, which are the ones considered hereafter.

The average strength (8 = |B|) of a stochastic magnetic field is <|§|> = 0. This is a reasonable
approximation considering the cosmological principle, which posits that the Universe is homogeneous



and isotropic at very large scales. As a consequence, all individual components of the magnetic
field would average to zero ((Bx) = (B,) = (B;) = 0), under the typical assumption that they are
normally distributed — a reasonable first-order approximation.

When one refers to the strength of stochastic magnetic fields, often what is meant is not the

average field within a given volume V/, but its root mean square (RMS) value?:

1 Lo
B>=B2_= v /d3FB(F) -B(7r). (18)

Magnetic-field lines can have non-trivial topologies, whose information is encoded in a quantity
called magnetic helicity (Hg), defined as:

Hg = \i/d%é(f) CA(P), (19)
4

with ﬁdenoting the magnetic vector potential, whose curl equates the magnetic field (§ =V x E)
This quantity is important in cosmology because it relates to many processes taking place in the
early Universe like baryogenesis and leptogenesis [? ], in addition to playing a role in the evolution
of the magnetic field itself and consequently in the formation of structures [? ].

Stochastic magnetic fields are usually described by their Fourier representation:

=

B (/?) - (27r1)3/2v/d3?§(?)e—"”, (20)

with K representing the wave vector. This choice of representation is useful because it enables a
simplified description of the correlation between any two modes k and k’. For instance, for two
spatial coordinates a and b, the ensemble average of the magnetic field is

(Bo(R)By(K)) = (2m)* 6 (K — K)Pap(K) . (21)
For a homogeneous and isotropic magnetic field, P, is given by

. P kak L .

where €, is the Levi-Civita symbol, 0,5 is the Kronecker delta, Py is a normalisation constant,
H(K) is the spectral density of magnetic helicity, cj; is a constant, and k = |k| is the absolute value
of the wave vector. The spectral magnetic energy (M(k)) is linked to (k) via the relation

<y -

Note that it is through the correlator (eq. 22) that the magnetic power spectrum (M) comes into
play. It is assumed to follow a power law of the form

M(K) o |K|%6~1 o k2 )é(/?)‘ , (24)

2This is, indeed, a very common misconception that pervades the literature, especially works on UHECRSs.

10



where a g is the spectral index of the magnetic field. At present time, for large values of k, i.e., for
small scales, cosmological magnetic fields are thought to be of Kolmogorov-type (ag = —2/3) [? ?
| or Iroshnikov-Kraichnan—type (aeg = —1/2) [? ? |. At larger scales, ag = 5 (Batchelor spectrum)
is expected. Moreover, if magnetic fields originated during inflation, its spectrum would most likely
be scale-invariant (ag =0) [? 2?7 7 ].

The last relevant statistical observable is the correlation length or coherence length (Lg),
which relates to the dominant scale of the magnetic field, i.e., the average size of the eddies. It can
be written as [? ]

[ dk k=IM(k)
=2

te [ dk M(K)

(25)
Several other definitions can be found in the literature [? ? ].

A magnetic turbulence description frequently found is the cascade model (e.g. [? ? ? ]), wherein
magnetic energy is injected at large scales (the so-called energy range) and subsequently transferred
to smaller scales (the inertial range), below which the turbulent energy tends to dissipate.

Turbulent stochastic magnetic fields tend to follow power laws of the form of eq. 24. This is
supported by observations of interplanetary and interstellar magnetic fields [? ? ? ]. In practice,
eq. 24 does not cover an infinitude of k's, being restricted to values of larger than a given cut-off
wave number (i.e., k > kp) and vanishing outside this range.

2.5.2 Intergalactic magnetic fields

All charged particles coming from astrophysical objects outside the Milky Way can have their trajec-
tories influenced by intergalactic magnetic fields (IGMFs). Our current knowledge of IGMFs is
poor. This limitation is partly attributed to the gap in understanding their origin and evolution (for
comprehensive reviews, see [? 7 ]).

IGMFs are believed to permeate the universe at large scales. Inside galaxy clusters, they can
attain intensities of about ~ 10710 T in the central regions [? ? ]. In the large-scale filaments
connecting by cluster, their strength lies between ~ 1072 and 107! T [? ? ]. The scenario within
cosmic voids remains less clear. Within these regions’ inner parts, IGMFs might not exist at all if their
origins were tied to spatially localised astrophysical processes. Nonetheless, gamma-ray observations
impose lower limits on integrated IGMFs along the line of sight, predominantly influenced by voids,
indicating values of B > 10721-1071°T[? 2?2?2227 7]

Uncertainties related to IGMFs in cosmic voids are even more relevant when considering that these
voids constitute a substantial portion of the universe's volume, ranging from about 20% to 80%. The
remainder of the volume is filled by galaxy clusters and filaments, with the clusters accounting for
merely < 1073 [? ? |. This discrepancy emphasises that charged particles journeying cosmological
distances are likely to be influenced by the fields prevailing in voids.

The typical size of the magnetic domain, this is, the coherence length (Lg), remains even more
uncertain. If they are very large, this might not be an issue, but given the vast parameter space,
there is no reason to believe this might be the case. In the context of filaments and galaxy clusters,
these fields tend to be bound by the size of these structures. However, within voids, their range spans
a diverse spectrum, varying from a fraction of a parsec to dimensions encompassing the observable
universe [? ? ]. Current constraints on the coherence scale are weak, but there is some support for
10 kpc S Lg < 100 Mpc [? ].

The helicity of IGMFs have also been suggested to affect the propagation of charged particles in

11
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Figure 3: Comparison of the cumulative volume filling factors according to various studies [? 7 ? ?
|. Figure taken from ref. [? ].

magnetic fields [? ? ? ], which could have profound implications for understanding early-universe
cosmology (see, e.g., ref. [? | for a review).

Investigations of the motion of charged particles in the magnetised cosmic web primarily hinge
on cosmological N-body simulations. In these simulations, a designated volume evolves from its
inception to the current state through magnetohydrodynamics (MHD). Nevertheless, there exists
disparities among different simulations (e.g. [? ? ? ? ? ]), in particular in their filling factors, which
describe the fraction of the universe's volume with fields stronger than a given value of reference. A

compilation of some of these models is shown in fig. 3.

2.5.3 Galactic magnetic fields

The study of the Galactic magnetic field (GMF) is remarkably challenging (see, e.g., ref. [? 7 ]
for a review). Drawing from the available observational data, an array of GMFs has emerged, each
capable of fitting specific datasets. Nevertheless, inherent degeneracies among these models persist
?7?77]

Within the disc, the Galaxy's field is believed to be an axisymmetric spiral with strength ~
0.6 nT [? ? ]. The pitch angle of this spiral is, however, uncertain [? ? ]. Driving the total field
strength, the turbulent component exhibits considerable variability. Its coherence length spans from
scales as small as parsecs up to ~ 1 kpc [? ]. Interestingly, the coherent component of the field
reverses several times at scales larger than this, in the middle of the Galactic plane [? ].

Several models for the GMF exist. While the earlier ones were analytical, only in the last two
decades has it been possible to build all-encompassing models based on a variety of observational
tracers, such as the widely-used Jansson & Farrar [? ? ]. With the growing body of observations,

this model is being revisited and will likely be improved in the near future [? 7 ].
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2.5.4 Propagation of charged particles

The momentum (p) of a charged particle of charge g and mass m propagating with velocity V = p/ym
in a magnetised media can change according to the Lorentz force (l-:g), given by

. dp(r, t dv(t = - =
_dtny _ ():q<E(r,t)+v(t)><B(r,t)) (26)
dt dt
where 7 is the position of the particle, t the time in some convenient coordinate system, and 7y
represents the Lorentz factor of the particle. Here E and B denote, respectively, the electric and
magnetic fields of the medium. In many astrophysical applications |E| &~ 03.

Eq. 26 can be written in terms of the velocity, instead of the momentum, resulting in

dv(t) g _ =
Together with
dr
o ar 9
TS (28)

eq. 27 constitute a set of differential equations whose solution fully describes the motion of the
particle under the influence of the magnetic field (5).

2.5.4.1 A homogenous magnetic field

To solve the equations of motion of a charged particle in a magnetic field, consider first the case of
a homogeneous magnetic field: é(? t) = B. Without loss of generality, a coordinate system can
be chosen oriented along the z axis: B = BZ. In this case, the velocity component of V parallel to
Z is completely arbitrary and irrelevant for propagation because of the vector product vV x B. This
reduces the complexity of the problem by making the treatment of one of the dimensions trivial. The
solution to the equations of motion can be obtained by solving a system of two differential equations

of first order in the velocity:
dvy q

E = m’yBVy E(JJVy
dvy = ~tiX = —wvx (29)
dt mry
dv,
(ar = °

To simplify the notation, the gyrofrequency is defined:

_ lalB
w=—.

o (30)

In addition, the parallel and the perpedincular components of the velocity with respect to the magnetic
field are introduced: Vj(t) = vz(t)2 and V| (t) = v (t)X + v (1)y.

In general, V(t) = Vj(t) + V.(t), but in this particular case these quantities are all constant
(V) + V| = |V|] = constant). A useful concept that can be introduced at this stage is the pitch

3This assertion can be proven by demonstrating the existence of another reference frame where the electric field E
is null, by performing a Lorentz transformation. This follows immediately from the principle of relativity, which states
that all non-inertial frames are equivalent, such that the rest frame of the particle in motion can be chosen.
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angle, ¢,, which links the parallel and perpendicular components of the velocity as follows:

vy (t)
tan¢,(t) = : 31
P VH(t) ( )
For the simple homogeneous magnetic field considered here, the pitch angle is constant. This follows
from the fact that % = 0, which implies dsti =
The solution to the system of differential equations is immediate:
vy (t) = vy cos(p — wt), (32)
vy (t) = visin(p — wt), (33)
vz(t) = v, (34)

where @ is a phase factor. To obtain the time-dependence of the coordinates, these equations should
be integrated, yielding

x(t) = x(0) + %sin(p— %sin((p—wt), (35)
y(t) =y(0) — % cosp + % cos(p — wt), (36)
z(t) :Z(O)—i-V”t. (37)

An example of how these results affect the trajectories of charged particles can be seen in figure 4.

v=(0.1, 0.1, 1.0)
v=(0.5, 0.5, 0.1)
v=(0.5, 0.5, 1.0)
2.0
1.5
N 1.0
0.5
0.1
0.075
0.0 0.050
—0.04 _ 0.025
0.02 0.00 0.02 0.04 0.000 y

Figure 4: An example of the trajectory described by a particle in 3D. The parameters are arbitrary,
except for the velocities. The different velocities are instructive to illustrate how the different com-
binations of perpendicular and parallel components affect the results.

Note that v2(t) + vf(t) = constant, which is a circular motion in the xy plane around the point

v, o Vi
(Xcentre: _ycentre) = (X(O) + U sin ¢r y(O) - U Cos ¢> . (38)

It is possible to identify a characteristic quantity with dimensions of length related to the gyrofre-
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quency. This is the Larmor radius (or gyroradius), given by

48 ymv
Rl =—= :
T w o [aB

(39)

In the ultrarelativistic limit, assuming small pitch angles (tan ¢, ~ 0) such that vj > v, (see eq. 31),
v = C. In this case, the usual relativistic dispersion relation becomes

2 2 2
E? = (pc)®+ (mc?)” =2 (pL +py)”~ + (mc?)” ~ pic’. (40)
Therefore, the definition of the Larmor radius (eq. 39) can be rewritten in a more convenient form

in terms of the energy £ = ymc? of the particle:

E

RL=TqcB

(41)

2.5.4.2 A homogenous magnetic field with a perturbation

Suppose a perturbation (65) is added to the simple magnetic field from §2.5.4.1, now denoted By
(with By = |§0|) which can be in an arbitrary direction. The total field now reads B=By+dB=
Bo2 + 6B. This can be plugged into the equation of motion (eq. 27):
dv - - _
YV 9yxB=IduxB+ LixsB. (42)
dt  my ym ym
The solution for first term on the right-hand side of the last equality is known (egs. 32—-34 and 35-37).
To obtain the full solution, one must first write down the system of differential equations:

dj—w véﬁ—v@ + woV,

dt ~ °\"' B, B 0¥y

dVy 68)( 652

-y X _ D R 4
at Wo <vz By Vx B, WoVx , (3)
dt "\ ™ By  YBy )"

where wp is what was formerly w, this is, the gyrofrequency corresponding to the unperturbed

magnetic field (eq. 30). Note that each i-th component of the perturbations is assumed to vary

déB;
qr- ~ 0.

The set of differential equations 43 can be solved using variation of parameters. For simplicity,

slowly with time, such that

let a;(t) be the terms within parentheses times wp. The ansatz is the following:

V(1) = g1(t) coswot 4+ go(t) sinwot (44)
vy (t) = go(t) coswot — g1(t) sinwot, (45)
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where g;(t) and g»(t) are two functions to be determined. By inspection, it is possible to show that

g1(t) :/dt’ [ay(t") coswot’ — ax(t') sinwot'] (46)
0

ap(t) = /dt’ [ay (t') sinwot’ + ax(t') coswot'] . (47)
0

After some tedious integrations (by parts), the velocities are obtained [? |:

—-

Vi (t) = v (0) coswot + v, (0) sinwot + coswot [ dt’ [a,(t') coswot’ — ax(t") sinwot']

N (48)
+sinwot/dt’ [ay(t') sinwot’ + ax(t') coswot’]
0
t
vy (t) = v, (0) coswot — vx(0) SinW0t+C05wot/dt/ [ay (t") sinwot’ + ax(t') coswot’]
(49)

—sinwgt [ dt’ [a,(t") coswot’ — ax(t') sinwot'] .

O\
-+ o

The guiding centre follows the magnetic-field lines. The motion is a superposition of two com-
ponents, one that rotates in the xy plane, and another that moves stochastically, as dictated by the
perturbing field. For this reason, this is known as perpendicular scattering. A better understand-
ing of this motion can be grasped by considering an arbitrary instant in time and integrating the

velocities over one period:

. t+T
ui(t) = T / dt’ V,‘(t/), (50)
t
where T = 27 /wq is the period of the particle. It follows then that

1 0B« 0B,
U (t) ~ w—oax(t) = Vg Vg (51)

-1 6By 0B,
uy (t) ~ ;an(t) = VZ?O - Vy By (52)
uz(t) = vy (t). (53)

Intermediate steps for this calculation are provided in ref. [? ]*.

It is important to once again bring to the reader’s attention the motivation for the description
of a stochastic magnetic field in §2.5.1. The perturbation 8B can be seen as the introduction of
an additional turbulent field on top of an already-existing homogeneous one. This is essential for
modelling how particles propagate in magnetic fields, since this exact treatment could be applied to
determine particles’ trajectories within individual magnetic domains with a regular (homogeneous)

*Note that here | employ S.I. units, whereas Shalchi [? | uses Gaussian cgs units. This introduces a few differences,
in particular in the definition of the gyrofrequency.
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component and a turbulent (perturbation) component on top of it, like in the Milky Way.
From here, it is only possible to obtain the position vector 7(t) knowing properties of the per-
turbation (65(/”, t)), or statistically, for a collection of particles, as done in §2.5.4.3.

2.5.4.3 Ensemble propagation

Sections §2.5.4.1 covered the motion of a single charged particle in a homogeneous magnetic field.
In §2.5.4.2 a perturbation was added to the magnetic field and a set of equations (eq. 43) was
obtained. However, it was not directly solved because 6B may be a function of position () and
time (t). Here the essential concepts of §2.5.1 are adopted. They serve as bases for the subsequent
discussions. In particular, the relationship between the mean squared displacements (<Ax2>, <Ay2>,
and (Az?)) and time, through the diffusion coefficient, will be used henceforth.

At this stage, a new concept comes in handy: the running diffusion coefficient, defined as:

dex(8) = 5 {(Bx()2) (54)

Here the coordinate ‘x’ is simply a placeholder for all cartesian coordinates, with Ax = x(t) — x(0).
Taking the limit of infinite time, the diffusion coefficiente kyx — which is a constant — corre-
sponding to the running diffusion coefficient (dyx) is obtained:

Kxx = tlngo dxx(t) . (55)

Nevertheless, it should be noted that this quantity is only mathematically defined as in reality time
cannot be infinitely large. It suffices to employ dyx to describe the system whenever t > tg, i.e.,
when diffusive behaviour was reached after a time scale £,.

These considerations show the importance of a statistical treatment of the relevant quantities,
in particular the spatial coordinates. A useful mathematical toolkit to assist with these calculations
is the Taylor-Green-Kubo (TGK) formalism.

When investigating the flow of Lagrangian particles, Taylor [? ] came up with a simple and elegant
way to describe statistical of a particle’s displacement by using the velocity or, more specifically, the
autocorrelation function thereof. Taylor's idea has been later revisited by Green [? | and Kubo [? ]
in the context of statistical mechanics. The Taylor-Green-Kubo (TGK) approach, as it became
later known, is extremely useful to calculated diffusion coefficients to model the transport of an
ensemble of particles in a given medium.

Eq. 53 imply that the charged particles will displace perpendicularly to the direction of the
homogeneous field. The RMS of its displacement is given by

2

<(Ax(t))2> —< /dt’ V() > , (56)
0

which can be opened up as follows:
t t
<(Ax(t))2> - /dt’/dt” (e() v (1)) (57)
0 0
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Note that the interval [0, t] can be split into [0, t'] and [t/, t], such that

t t t t

((ax(t))?) :/dt’/dt” <vX(t’)vX(t”)>+/dt’/dt” (el )e(£1)) - (58)

0 0 0 t/

It is reasonable to assume homogeneity for most cases, such that (vi(t") vy (t”)) = (v (t’ — t")vi(0))
in the first integral, and (vy(t” — t')v«(0)) in the second one. Therefore, it follows immediately from
eq. 58 that

<(Ax(t))2> - 2/dt’ (t— ') (e () (0)) . (59)
0

For more details on this derivation, see section 1.3.2 of ref. [? ] .
A process similar to that used to derive eq. 59 can also be employed to obtain other displacement
correlators ((Ax(t)Az(t)), (Az(t)Az(t)), etc), which might be required in more complex situations.
The running diffusion coefficient (dyx(t)) can be obtained from eq. 59 by applying eq. 54,

resulting in:
t

dyx (t) = /dt’ {ve(t)vx(0)) | (60)
0

which for fully diffusive propagation implies dyx(t — 00) = Kxx = constant. This leads to Kubo's

equation:
o0

o = /dt’ (v()1x(0)) (61)
0

Considering the other coordinates (y, and z), and the symmetry of the problem at hand — recall
that this is fully motivated by the turbulent magnetic field case of §2.5.4.2 — it is possible to identify
two diffusion coefficients, dyx(t) = dy,(t) = d1(t) and d.(t) = d|(t) (and kxx = Kyy = K1 and
Kzz = K||). Therefore, two regimes are identified for the transport of charged particles, parallel and
perpendicular. The diffusion coefficients (k| and k) are essential for understanding how a collection

of particles move, which is described by the Fokker-Planck equation.

The Fokker-Planck equation was first introduced by A. Fokker [? ] and M. Planck [? ] in the
context of statistical mechanics, and later rederived by A. Kolmogorov [? |. It was motivated by the
need to describe the transport of an ensemble of particles subject to drag and stochastic forces, in
particular the changes in the probability density functions of particles’ velocities.

The Fokker-Planck equation can be understood as a phase-space equation that describes (statis-
tically) the spatio-temporal evolution of a collection of particles. It is calculated in the phase space,
including, therefore, spatial coordinates (r), time (t), and momentum variations (p). If the mass is
constant, the variation of the momentum vector translates into the variation of the velocity vector
(V). Given the symmetry of the problem, these vectors wobble around the guiding centre with a
given pitch angle. Therefore, one can simplify the treatment by replacing the momentum vectors
with the pitch angle (¢,) or its cosine (u = cos ¢p).

The equation reads:

of . - G of f\ 10 of ., Of
at+u-Vf—Q_au<Dwau+Dupap>+p26p<Dupau+pDppap>, (62)
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where f = f(r,p, t, u), with © = cos @, (see eq. 31), and Q = Q(7, p, t, u) symbolises source and
sink terms. The coefficients D, are the diffusion coefficients, particular to a magnetic-field model.
The last term in the equation is known as reacceleration or momentum diffusion. The vector
i = i(r) denotes the advection velocity, which is a combination of the plasma velocity and Alfvén
wave scattering.

The Fokker-Planck coefficients D, describe the relations

Doy = O7dt <8aa(tt) a[;(tt)> , (63)

for any generalised coordinates a and b. The integral can be readily identified as Kubo's equation

(eq. 61). Here these coordinates can be the usual spatial coordinates (x, y, z) or the pitch angle® (u).
Note that in many cases momentum is one of these generalised coordinates, with their corresponding
terms being part of the Fokker-Planck equation (eq. 62).

2.6 Particle decays

Particle decays occur when the lifetime of a given fundamental or composite particle is finite. The
time dependence of the number (N) of unstable particles at a time interval between t and t +dt is:
dN N

—_— =, (64)
dt T
wherein T is the lifetime of the particle in its own rest frame. This equation can be easily solved,
yielding
t
N(E) = N(to)exp (7). (65)
assuming that at at time to < t the number of particles was N(tp).
One particle can have multiple decay channels. The one that actually occurs depends on the
branching ratio (B). Some representative cases useful for high-energy astroparticle physics are listed
in table 2.6.

2.6.1 Nuclear decays

Nuclear decays are relevant processes for understanding CR propagation. Three types of decays
can be identified.

Alpha decays are characterised by the emission of an alpha particle (or a helium-4 nucleus). For
a generic nucleus éX it can be written as

A A—4 4
ZX _>Z—2 X +2 o,

where X symbolises the new nucleus, and g'a =% He is an alpha particle. In this case, the daughter
nucleus acquires roughly the Lorentz factor from its parent nucleus if the binding energy per nucleon
is small compared to the rest energy of the decay products.

*Formally, the pitch angle is ¢,, but for simplicity . = cos¢, will also be used to refer to the pitch angle,
interchangeably. The meaning can be implied from the context.
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Table 1: Table illustrating the main decay channels for some relevant unstable particles.

particle lifetime [s] decay products branching ratio

w 22x107°% e + Dty ~1
e + ety +7 6.0 x 1078
e +Uetv,+et+e 34x107°

0 8.5x 1071 g +4 0.98823
y+et +e 0.01174
et+e +et+e 3.3x107°
et +e” 6.5 x 1078

el 26x1078  ut+u, 0.999877
et + ve 0.000123

n 877.7 pt+e + De ~ 1
pr+e” + e+ 107°

$H 39x 108  3He+e + 7 ~ 1

Beta decays consist in the conversion of a neutron into a proton (8" decay):
OX =5 X+e + e,
or in the conversion of a proton into a neutron (G~ decay):
IX =2 X+et +ue.

Note that this is an important channel for neutrino production by nuclei.

In gamma decays a photon is spontaneously emitted by an unstable nucleus:
AX =5 X +7.

The combination of the number of protons (Z) and of the number of neutrons (N = A — Z)
can, in principle, be completely arbitrary, regardless of whether it results in a stable nucleus or not.
However, for some combinations of Z and N, this would inevitably result in immediate decays via
nucleon dripping, which consists in the mission of a proton or a neutron of same isospin. As in the
case of alpha decay, at high energies the leaked nucleons approximately retain the parent’'s Lorentz
factor. The number of decay channels for various combinations of Z and N are shown in the left
panel of figure 5. The main decay modes for each nucleus are shown in the right panel.

Nuclear lifetimes are measured in laboratory and compiled in databases such as NuDat database® [?
? ], which also allows interactive search of decay radiation and nuclear structural information.

2.7 Photonuclear interactions

Photonuclear interactions involve the interaction of a nucleus X, with atomic mass A, composed
of Z protons (éX). They are generally written as éX + Ybg — ... The exact interaction taking
place depends on the cross section for the processes, which is a consequence of the spectral energy
distribution of background photons (7vpg) and on the energy of the nucleus. The ellipsis ('...")
indicate the results of the interaction, which depends on the spectral distribution of background

*https://www.nndc.bnl.gov/nudat3/
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proton dripping

number of protons

neutron dripping

number of decay channels
number of protons

5 10 15 20 25 30 5 10 15 20 25 30
number of neutrons number of neutrons

Figure 5: The number of decay channels for each combination of proton (Z) and neutron (/) number
are shown in the left panel. The white regions correspond to stable nuclei, with no (known) decay
modes. The dominant decay channels for these nuclei are shown in the right panel. Figure taken
from ref. [? ].

photons as well as on the energy of the nucleus. Some of the processes relevant for high-energy
modelling are listed below.

2.7.1 Bethe-Heitler pair production

When a nucleus interacts with a background photon (7,g) electron-positron pairs can be created [?
]. This is described by the reaction: éX + Yog —>é X+ eT + e™. It is essentially the equivalent
to bremsstrahlung radiation with a photon instead of an electron/positron on the left side of the
reaction.

Let £ be the energy of a nucleus of atomic number Z and mass A. The energy loss by a nucleus
éX per unit distance is the same rate at which electrons (and positrons) gain energy if the energy
of the background photon is much smaller than the rest mass of electrons. It reads

9E 22 (macty [ den (1) 98
arg Z2( )22/d£ < ) (66)

dx 27 &2

where ry is the classical radius of the electron, a is the fine-structure constant, £ = 2’y€/(mec2),
and ¢(&) is a function of the differential cross sections (for details see ref. [? ]).
In the particular case of a blackbody of temperature T, as is the CMB, eq. 66 reduces to [? |:

dE argZQ(meczkEgTF( > / " d(¢) (67)
2H3.3
dx m2h3c 2vkgT exp 2’;7/E<CT5>

Bethe-Heitler pair production takes place if the energy of the background photon in the nucleus
rest frame is €’ > 1 MeV. Alternatively, in the laboratory frame, the threshold condition becomes

E > 5% 102°A (i) eV,
eV

Note that the treatment above ignore possible screening effects, which are expected to be small
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at high energies [? ]. Moreover, it neglects possible polarisation effects that could arise, which are
unimportant in the ultrarelativistic regime [? 7 ].

For UHECRSs traversing cosmic expanses, the mean free path for Bethe-Heitler pair production is
fairly small, but so is the inelasticity of the process (< 10_3). This has implications for the choice
of algorithm to treat this problem computationally, as discussed in §3.3 and §4.7.2.

Remarkably, it has been postulated that this process underlies the origin of the ankle feature in
the cosmic-ray spectrum if UHECRs consist exclusively of protons [? ]. Yet, for atomic nuclei, the
energy loss scales are roughly proportional to Z2/A in comparison to proton energy losses.

Comprehensive investigations concerning the differential energy loss rate arising from this mech-
anism, as well as the resultant spectrum of generated electron-positron pairs, have been detailed in
refs. [? 7 ].

2.7.2 Photomeson production

The generation of mesons resulting from the interaction between a cosmic-ray nucleus (éX) and
a background photon (7y,g) holds immense significance within the multimessenger framework, as it
yields both neutrinos and photons. For instance, when considering protons, in their rest frame, the
interaction with photons with energies €’ 2 1 GeV is characterised by the dominance of a short-lived
resonance. This resonance rapidly transforms into mesons and other secondary particles. As energy
levels escalate, the potential for multiple particle generation during a single interaction also increases.
Furthermore, direct meson production is feasible at these elevated energies.

An important process in photonuclear meson interactions is the production of pions. For UHE
protons, this process triggers a A" resonance, which subsequently decays into either protons and
neutral pions (éX + Yog = AT = p+ 79 + ...) or neutrons and charged pions (’éX + Yog —
At — n+4+ 7T + ...). The decay of the pions (see §2.6) generate copious amounts of photons
and neutrinos. Notably, this mechanism gives rise to the Greisen—Zatsepin—Kuzmin (GZK) cutoff,
stemming from UHE protons interacting with the CMB [? ? ].

The cross section for the interaction of a nucleon (proton or neutron) with a background photon
in the rest frame of the nucleon is shown in figure 6.

However, addressing these interactions for atomic nuclei is more complicated due to screening
effects’. Unlike in the proton case, the target photon does not interact uniformly with all nucleons
constituting the nucleus. Instead, a scaling relation based on the numbers of protons and neutrons
is often employed to derive the mean free path (as seen in references like [? ]). This approach can
be problematic, as it has been demonstrated to deviate from measured cross sections, significantly

impacting predictions of secondary neutrino and photon fluxes [? |.

2.7.3 Photodisintegration

Interactions involving cosmic rays and background photons can fragment nuclei into smaller con-
stituents: éX + Vbg —>§/, X+ .... This phenomenon is usually interpreted as two sequential sub-
processes, the first being photoabsorption by the nucleus, which creates an excited state, and its
subsequential decay that often emits nucleons [? ].

"Screening effects can be understood by envisioning a nucleus gathering A protons and neutrons in total. The
three-dimensional arrangement of these nucleons will create layers, some of which will be “hidden” in the inner-most
parts of the nucleus and not directly exposed. It follows from this simple intuitive reasoning that only a fraction of the
nucleons will be on the surface and act as targets for interactions. A first guess would be that this relates to the ratio
between surface area and volume, for a collection of A nucleons, revealing about A%3 of them.
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Figure 6: The graph shows the total cross section for p + ¥,z — meson and n + ypg — meson, as a
function of the background photon energy in the nucleon rest frame (¢’). Figure taken from ref. [?

]

Photodisintegration of very energetic cosmic-ray nuclei has been studied in the past by several
authors [? 7 ? ], but only in recent years has it evolved to reduce uncertanties [? ? ? |. Nevertheless,
these cross section still remains a prominent source of uncertainty in UHECR propagation [? .

The outcomes of photodisintegration are exemplified by processes such as:

= proton emission: éX + Vog —>§j X+ p;

= neutron emission: éX + Yog —>é_l X+ n;

= -particle emission: éX + Vbg —>’§:‘2l X +4 He.

In the UHE domains, the photodisintegration cross section is significantly influenced by two com-
ponents. The first is the giant dipole resonance (GDR), which dominates at photon energies
g’ < 50; MeV in the nucleus rest frame. The other is the quasi-deuteron (QD) emission, preva-
lent in the energy range 50 < &’/MeV < 150.

When modelling photodisintegration processes, it is important to bear in mind that photonuclear
cross sections are not fully known. As a consequence, they can have a considerable impact in
the propagation of UHECRs [? ? ? ]. Consequently, this knowledge gap holds the potential to
substantially impact the consequent production of photons and neutrinos [? |.

2.7.4 Photonuclear elastic scattering

Nuclei can undergo interactions with background photons and simply transfer energy to them. This
process is known as elastic scattering: éX—i—’ng —>é X4y. At ultra-high energies, this is subdominant
compared to photodisintegration.

Elastic scattering is negligible as an energy-loss mechanism of nuclei, but it can be important in

computing photon fluxes produced by energetic cosmic-ray nuclei.
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2.8 Hadronuclear interactions

Hadronuclear interactions are generally elaborate and cannot be exactly described. This is because the
underlying theory of strong interactions, quantum chromodynamics (QCD), poses major challenges
in terms of computational treatment.

2.8.1 Proton-proton interactions

For proton-proton interaction, there are several possible channels. The overwhelming majority result
in the production of pions. Some of these channels are shown below.

p+p—=p+p+n°,
p+p—=p+p+ml4a°
p+p—=p+n+nt +7°
p+p—p+n+at+n +x°

The cross section for proton-proton interactions is not exactly known. Instead, it is obtained
through a combination of measurements [? 2 ? ? ? ? 7 | and extrapolation to higher energies
using hadronic interaction models [? ? ? ? ]. One possible parametrisation was provided in ref. [?

|:

of?(x) = [30.7 — 0.96log(x) + 0.18log*(x)] [1 — x "] 107 m*, (68)
where 5
E —mpc
x(E) = Nl (69)
2myoc? + 3o

with m, denoting the mass of a proton with energy E (measured in the lab frame), and mg o
representing the mass of the neutral pion.

It is worth stressing that many theoretical uncertainties remain in the measurement of the proton-
proton cross section, despite the increasingly more accurate data being delivered. In particular, the
relative contribution of the elastic with respect to the inelastic cross sections is far from clear, as is
the differential cross sections and the scattering amplitudes. For more details see, e.g., refs. [? 7 ?

]

2.8.2 Nucleus-nucleus interactions

For nucleus-nucleus interactions, Glauber theory [? ] can be employed. In this case, the collision can
be modelled as a succession of scattering between a nucleon from one of the nuclei, and a nucleon
from the other. Even though this is an approximation, it sets an upper limit to the total inelastic
cross section, which should be smaller than the sum of all individual nucleon-nucleon cross sections.
This approximation is not adequate for lighter nuclei [? |.

The nucleus-nucleus cross section can be approximated as [? |

ﬁeAt(X) e ,1/3+A1/3 b (A 1/3+A 1/3)} max{l,log( '”e((;)))} (70)

wherein A; and A; refer to the atomic mass of the incident and target nuclei, respectively, and the
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coefficient by, empirically obtained, reads [? ]

2.247 — 0.915 (1 + A;1/3) if i=H,
1.581 — 0.876 (A71/3+A;1/3) it i % IH.

(71)

The variable x is conveniently defined in terms of the kinetic energy per nucleon of the incident

particle
E — mgp.c?
X(E) = g 2 ' (72)
ne 5 m1rOC2
MyoC* + my
pp

where 037 as in eq. 68 and xo = x(1 PeV).

Nucleus-nucleus interactions are usually treated by employing event generators, which are libraries
that models a given particle interaction based on their initial state, accounting for the stochasticity
of the process at hand. Some widely used event generators include PYTHIA® [? ? ], HERWIG [?
? ? ], and Sherpa [? ], among others. For higher energy studies, in particular the interaction of
CRs with air, commonly used hadronic interaction codes are EPOS [? ], QGSJet [? ? ? |, and
Sibyll [? ? ]. Note, however, that at UHEs, these generators are limited by the availability (or
actually lack thereof) of accelerator data, since they operate at much higher energies than what
current accelerators can reach.

For astrophysical applications, hadronuclear interactions are usually parametrised based on simu-
lations. Common parametrisations includes those from refs. [? ? ? |. One can argue that considering
all other astrophysical uncertainties, the parametrisations provide an adequate approximation. How-
ever, recent simulation-based studies challenge this assertion [? |.

2.9 Electromagnetic interactions

2.9.1 Pair production

Breit-Wheeler pair production is one of the simplest processes in quantum electrodynamics (QED). It
is essentially the direct production of an electron-positron pair due to the interaction of two photons:
Y+ Yg = €7 + e [? ]. The cross section for this process is well-known:

_ 30T o 22 o4 1+8Y\ 2
o8) = 277 (1 5)[(3 5>'“(1_ﬁ) 2 (2 ﬁ)], 73)
where o1 represents the Thomson cross section, and
2 4
B—1/1- 4msec (78)

Here s is the squared centre of mass energy, which for a high-energy photon with energy E scattering
off a low-energy background photon of energy € reads

s =2Ee(1—cosh) , (75)

8See ref. [? | for a historical overview of this widely-used event generator.
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wherein 8 denotes the collision angle. It follows immediately that the kinematic thresholds for this
interaction are Smin = M2c* and Smax = M2c* + 2Eemax(1 + B).

It is natural to think that electrons and positrons will have approximately the same energy. In
the high-energy regime (s > mZ2c*), also known as the Klein-Nishina limit, this is not necessarily
true. In this case, the energy of the leptons produced will depend on the differential cross section
for the process:

do 1] y2 1oy (1-p2)2 1 |
4y(1—y)? | 14262 —2p4

where y is the fraction of the energy of the energetic photon being taken by one of the particles

dy “y|1-

(76)

produced. The other particle, evidently, takes a fraction of the primary's energy of 1 — y.

2.9.2 Inverse Compton scattering

This basic quantum electrodynamics (QED) process is described by the reaction: e* + Yog —
et + . Inverse Compton scattering (ICS) is, therefore, a simple momentum exchange, as is the
usual Compton effect [? |, but in this case involving a high-energy electron and low-energy photons
instead of the opposite. Compton effect, both the direct and the inverse, constitute one of the
most important milestones of 20th-century physics [? | with far-reaching consequences in several
sub-fields of physics, especially astrophysics.

The squared centre-of-mass energy (S) is

s=m2c* +2Ee (1 —PBcosh) , (77)
with B given by
2 4
5 —msc
= e 7
g s+ m2ct (78)

Its kinematic threshold is simply the requirement that the electron continues to exist after the

collision: Smin = m2c*.

The cross section for ICS can be written as [? ]

3o mzct 5 5 1 s 3 1+p
o(s) = 57 {ﬁ(Hm(Hzﬁ—ﬁ ~26%) - (23 —[3)|n<1_ﬁ>]. (79)

In the low-energy limit (s ~ m2c*), eq. 79 reduces to the usual Thomson scattering result (o ~ o).

After the scattering the electron (or positron), which had an initial energy £, will have energy
E’, as dictated by the differential cross section [? |:
do 3ot mic*1+ 1 21— 1 1-B)° 1\?
- = T e s +f+ﬂ 1—= +% 1— = , (80)
dE’ ~ 8E s B y B y B y

with y = E'/E.

2.9.3 Double pair production

Double pair production is the higher-order counterpart of the usual pair production. It can be written
asy+pg — €7 +e” + e +e. Its possible role in energetic astrophysical processes has long been
investigates [? ? .
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The centre-of-mass energy for this process is the same as that for pair production (eq. 75):

s =2Ee(1—cos0) . (81)
This interaction has a final state composed of four electrons, so the threshold is smin = 16m§c4.
The high-energy limit of its cross section (s > 16m2c*) is [? |:

16m2c47°
mC] (82)

o(s) =0 [1 <

where 05, = 6.45 x 10734 m2.
The energy distribution of the electrons and positrons generated are more difficult to be obtained.
For one of them, a differential cross section of the form

dEL — /57

can be written, wherein the quantities marked with a ‘x' are measured in the centre of mass frame,

do _ 1 (2\/Eé,s>atot(s) (83)

such that £’ is the energy of one of the produced particles in this frame. The function g cannot
be obtained in a straightforward manner. According to ref. [? ], a reasonable assumption is that at
such high energies one of the pairs receive all the energy, and each of its components takes half of

()5 1)

with § referring to the Dirac delta function. A more detailed calculation employing event generators

the energy, which implies

was conducted by the authors of ref. [? ], who provided a fit to the results:

/()3 (%)

2.9.4 Triplet production

Triplet pair production is related to inverse Compton scattering, but instead of a photon at the end
of the process a pair is created: e® + Yog — et + et 4 e™. Its role in the propagation of particles
has been identified long ago [? 7 |.

Being closely related to inverse Compton scattering, the squared centre-of-mass energy for this
process is the same:

s=m2c*+2Ee (1 —PBcosh) . (86)

The final state contains three electrons, such that this process occurs only above the threshold
Smin = 9m2c?.
Its cross section in the high-energy limit (s > m2c?) is [? ]

_ 3aot |28 5 218
ols) = 8m [9 n <m§c4> a 27} ' (87)

In this regime the differential cross section for one particle of the produced pair with energy E’ can

be written simply as a power law:
do /—7/4
95 & E . (88)
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2.10 Particle mixing

Processes other than interactions and decays that change the nature of a particle also exist. Within a
quantum-mechanical framework, they are usually described by a mixing of some intrinsic eigenstates®
of a family of particles (X), which results in propagation eigenstates'® (X). This notion can be

mathematically expressed as
=1 o (89)

where X; refers to the particle being observed. Here U;; are elements of U, the mixing matrix.

If U is diagonal, then there is no mixing between states. In this case, the intrinsic states of
the particles are exactly equal to the propagation eigenstates. However, if there are non-vanishing
off-diagonal elements, the corresponding states will mix among themselves.

The intrinsic eigenstates, by definition, are the free (i.e., in the absence of any potentials) particle
solutions to the wave equation, and thus can be written as

|Xi(t)) = X)) exp i (p; - F— Ejt)] (90)

where p; and E; denote the momentum and energy of particle X;, respectively.
The mixing of states is described by the Schrédinger equation:

ﬁwzmw, (91)

wherein H is the Hamiltonian of the system and
n
W) =S glx)), (92)
j=1

for arbitrary constants ¢; satistfying the condition > _; lgi|? = 1.
The time-evolution operator, assuming that the H is time-independent, is defined as

U(t) = exp (—iHt) . (93)

The connection between intrinsic and propagation eigenstates through the unitary (UTU = 1)
matrix U is

1Xi) =) Ul%;) (94)

J=1

9This terminology is not found elsewhere in the literature. In principle, there is no such thing as an intrinsic
eigenstate, since any basis can be chosen to describe the same phenomenon. Depending on one's philosophical
inclinations, what | am calling intrinsic eigenstates can have an ontological meaning, with direct correspondence with
real-world entities. However, for the purposes of this discussion it suffices to understand these states as the eigenstates
of the free Hamiltonian.

Once again, | make up a nomenclature that is not usually found in the literature, propagation eigenstate. This
refers to the states represented in a basis convenient for describing what is actually observed after the particle, which
is a quantum superposition of states, travelled a certain distance.
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Conversely, since U is unitary,
n
%) =D UsIX)). (95)
j=1

The probability (Px,) that a state X; will be detected after the particle travelled a distance L is
simply the sum of the probabilities of each component ending up as X;:

Px,(L) = [(Xilx) | (96)
Jj=1

The general form given by eq. 89 can be applied to many problems, the most notorius of which
is neutrino oscillations, described in §2.10.1

2.10.1 Neutrino oscillations

Neutrinos are detected in what is called flavour states — the electron (ve), the muon (v,) and
the v, neutrinos — the flavour eigenstates, which correspond to what had been previously been
called propagation eigenstates. However, they are a superposition of intrinsic eigenstates, which for
neutrinos are mass eigenstates'®.

The original idea of neutrino oscillations dates back to the late 1950s, building on the work of
B. Pontecorvo [? ]. The underlying theory of oscillations was further developed in the following
decade by others [? ? ]. Only towards the end of the 20th century has this phenomenon been
unambiguously confirmed through observations of solar neutrinos [? 7 |.

Let v represent the flavour state of a neutrino, and v its mass state. If propagation is in vacuum,
the mixing matrix (U) has the general form

Uel Ue2 Ue?;
U= | Ua Uwp Ui, (97)
UeTl UT2 UT3

where Ue1 refers to the mixing between the mass eigenstate 1 and the flavour state corresponding
to the electron neutrino (e), and similarly for the other terms. U is the so-called Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix, given by

C12€13 S12C13 size” 0 elon/? 0 0
_ i ‘ s /2
U= | —s12003 — c12503513€"°  C12C03 — S10523513€%  sp313 0 el/2 0|, (98)

[

512523 — C12C23513€i —C1253 — 512C23513ej5 C23C13 0 0 1

wherein ¢;; = cos0;; and s;; = sin0;;, and «; in the right-most matrix is related to whether neutrinos
are Dirac or Majorana particles.

Eq. 98, together with eq. 96, allow the calculation of oscillation probabilities, which is used to
infer neutrino states after propagating in the universe. Note, however, that this assumes propagation
in vacuum. While this assumption is adequate for many applications, this is not always the case. For

1Sometimes the mass eigenstates are referred to as physical eigenstates. | prefer to avoid such terminology, due
to the philosophical implications of the word ‘physical’. There is no guarantee that the mass eigenstates have direct
correspondence to what really exists in reality. In fact, what we call neutrinos might simply be a manifestation of other
yet-unknown phenomenon which, in this view, would be even more “physical”.
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that the Hamiltonian that goes into the Schrédinger equation (eq. 91) would change, making the
treatment more complicated and often requiring advanced computational methods for the solution.

2.11 Other energy loss processes

2.11.1 Synchrotron cooling

When exposed to a magnetic field, charged particles can release synchrotron radiation. For a particle
of mass m and charge g, moving with momentum pJ, the energy loss per unit length is given by:

X B

dE___d 8|, (99)

dx  6megctm?

where €y denotes the vacuum permittivity, and B represents the magnetic field. It is important to
note that when the particle’s motion aligns with the magnetic field, i.e., 5 || B, no radiation is
emitted.

The radiated synchrotron spectrum is strongly peaked around the critical energy,

3. .1 .4

E.= Ehc'y q?|8 X pl. (100)

It can be decomposed as a sum of two components, a parallel (/) and a perpendicular (/1) one,

given by [? ]

dl

d—o<F(y)+G(y), (101)
y

U Fy) - 6) 102

4, *FW-6W). (102)

(103)

Here the auxiliary functions F(y) and G(y) are [? ]

F(y) zy/Kg(y’)dy/ (104)
and
Gy) =yKz:(¥), (105)

where K's is a modified Bessel function and y = E,/E..

While3 the impact of synchrotron emission remains negligible for atomic nuclei journeying across
cosmic distances, largely due to the relatively low strengths of IGMFs [? ? ? ], it becomes important
in the environment of astrophysical sources, especially those with stronger magnetic fields. In these
environments, synchrotron radiation can potentially lead to distinctive spectral signatures that allow

for the deduction of magnetic field characteristics in these regions [? ? ].

2.11.2 Adiabatic cosmological losses

Energy losses occur for all particles, due to the adiabatic expansion of the Universe. The change in

redshift (dz) corresponding to an infinitesimally small distance dZ is described by the equation:

30



H
dz = ?0\/QA+Qm(1 +2)3de. (106)

Here, Hy is the current Hubble parameter, approximately 67.3 kms~! Mpc™!, and Q,,, and Q, stand
at about 0.3147 and 0.6853 respectively, representing the matter and dark-energy densities within
the flat A cold dark matter (ACDM) model, as per references [? ]. It is worth noting that eq. 106
would include an additional term accounting for radiation, although it is only relevant during the
very early stages of the universe's life (z 2 1000).

3 Building propagation models

3.1 Prescriptions for generating turbulent magnetic fields

The generation of turbulent stochastic magnetic fields, as described in 2.5.1, requires somewhat
advanced computational methods. Here | will present a sampling strategy relying on the Fourier
spectrum of the field, taking advantage of the equations from §2.5.1[? ? ? |.

| will present a general strategy for sampling a field with spectral index ag (see eq. 24) limited
to a range in Fourier space kmin < k < kmax. Because this approach relies on the expansion of the
magnetic field into a base containing two circularly polarised modes ({é,, é_}), this strategy is also
suitable for simulating helical magnetic fields.

| will refrain from providing the full derivation; for the whole derivation the reader is referred to

ref. [? ]. | will start with eq. 25 of this reference, transcribed below:

Qi

(k) = Br(K)ew (k) + B-(k)e_(k), (107)

with the tilde indicating that the quantity is in Fourier space. In this case, the usual basis {X,y, 2}
(in Fourier space) can be recast onto {&;, &, &} = {&,,é_, k}. Furthermore, B is

By (K) = |BL(K)| = |B+(K)] [cosei(/}‘) + /sinei(/?)] , (108)

wherein 0 < 6+(k) < 2 are random phases uniformly distributed in the interval. The generation
of a turbulent magnetic field distribution, therefore, can be done by sampling 6. from a uniform
distribution. The norm, By, is generated from a zero-mean Gaussian with standard deviation given
by the desired RMS of the field (see eq. 18). Note that this procedure is done for a grid with
(Nx, Ny, N~z) cells.

Once é(/_{) is sampled using the procedure described above, a Fourier transform can be applied
to bring this quantity to real space:

B(r) =% (F{BL(R)}) . (109)

Here F is the Fourier transform operator, and fRe is a function that takes the real part of the
argument. This result is subsequently normalised to the desired field RMS (labelled Byms), such that
B(F) is recast as

N

Nx N,V Nz

B(7) = Bums szzam)-é(m) (7)., (110)

i=1 j=1 k=1
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where 7jj) refers to the position vector in each cell of this grid.
Note that the non-helical case can be obtained by taking 6. different for the two components
of this basis, &, and é_. This effectively averages over the two polarisation modes that would not

exist if helicity had been neglected.

3.2 Particle trajectories in the presence of magnetic fields

Charged particles like cosmic-ray nuclei and electrons can be deflected in the presence of magnetic
fields. The equations of motion were already presented in §2.5.

In this section a few strategies to implement algorithms to solve them are presented. Single-
particle propagation algorithms are presented in §3.2.1 and §3.2.2. Methods for modelling the
transport of an ensemble of particles are described in §3.2.3.

3.2.1 Runge-Kutta algorithm

Runger-Kutta (RK) methods are numerical solvers for differential equations [? ? |. They solve all
equations simultaneously at discrete steps.

A set of six differential equations (eqgs. 27 and 28) can be solved a N-th order RK method, where
the order of the solver is typically N =4 (RK4) or N =5 (RK5). These equations take the general
form q

d% = F(t,x), (111)
with initial condition y(tg) = yp. Here y are placeholders for the phase space components, the
position (7) and momentum (p).

First, space has to be discretised into steps. The initial conditions are known, and so are the
properties of a particle at the first step. The subsequent propagation steps are obtained based on
the previous ones.

In explicit RK methods the equations are solved at each step, as follows:
Ns
Ynt1=Yn+5Y_ biki, (112)
i=1

where n indicates the step at which the calculation is being performed, s is the step size, b; is a
coefficient, and ns relates to the order of the RK method. The values of k; are:

ki =f(tn, ¥n), (113)
ko =f (tn + @5, Yn+ s (a21ki)) (114)
ks =f (t, + c35, Yo+ s (asiki + asokz)) | (115)
(116)
nNs
ki =f | th+Gs, yn+5 Y ajk | - (117)
=1

The coefficients ¢; can be obtained from the numerical tables.
Adaptative RK methods are a class of implicit algorithms that extended the previous idea. They
automatically allow for suitable choices of step sizes to keep the errors below a certain tolerance. In
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this case, the steps are:

Ns
Vi1 =Yo+sY bik. (118)
i=1

The condition to adjust the step size requires the calculation of the associated error, which is

ns
€ntl = Yo+l — Yhi1 = SZ biki — bk . (119)
i—1

The coefficients can be taken from look-up tables. A commonly used one constitutes the Cash-
Karp (CK) [? |, with a wide array of applications in astrophysics.

3.2.2 Boris push algorithm

The Boris push (BP) algorithm [? | is the state of the art for solving the equation of motion of a
charged particle in a magnetised medium. Unlike the RK method which solves a system of couple
differential equations, the BP algorithm solves the equations of motion related to the Lorentz force.
It is highly accurate without sacrificing efficiency [? ], outperforming the usual adaptative RK method
with CK coefficients by up to an order of magnitude [? |].

The strategy consists in writing down the Lorentz force (eq. 27) and solving [? |:

s Bt W e Bt B
= — x B, 120
At m 2 (120)
and . -
Int1—"n

Here n denotes the step at which the equation is being solved. It is clear that this scheme offsets
velocity and position by half a step with respect to each other.

One can define vi = v, .1 and v_ = v, _1. Equation 120 then becomes [? ]
2

+3

V+—V_ q . - =
T:%(V++V_)XB. (122)

This equation seems like a rotation, and indeed it is. The velocity vector will rotate by an angle ©,

S

— V4V x (124)

with a corresponding vector

This rotation will occur about

<L
|
<

|

+
<

|

X
<

which is perpendicular both to the magnetic field and the vector V| + V_.
The velocity at the end of the step can now be written as

Vo=V +7 x W, (125)

where a new vector (W) was introduced [? |:

2a
V= —">5. 126
M ETE (126)
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The strategy outlined above is applied successively to each step.

One of the main advantages of employing BP over CK is the fact that it is energy-conserving.
Moreover, in the usual RK schemes errors tend to accumulate, whereas for BP they tend to average
out. Finally, the BP algorithm would works efficiently also in the presence of electric fields, since

eq. 122 would retain the same form and only V.t would change.

3.2.3 Solving the Fokker-Planck transport equation

See ref. [?7 ].

3.3 Modelling the transport of astroparticles

Particle transport refers to the strategies to describe the intricacies of the motions of particles in
various media. Strategies to perform this modelling in the context of (high-energy) astrophysics and
astroparticle physics will be presented in this section, applied to the case of CR nuclei, gamma rays,
and neutrinos.

Two main strategies have been used to simulate the propagation of astroparticle in diverse en-
vironments, transport equations and Monte Carlo (MC) methods, described in §3.3.1 and §3.3.2,
respectively.

3.3.1 Transport equations

Analytical and semi-analytical methods to solve particle interactions have been widely used for
decades, given their relative simplicity. They are usually fast and rely on the solution of several
integrals over an ensemble of particles (as opposed to the Monte Carlo approach which does this on
a particle-by-particle basis, as described in §3.3.2).

While fast, transport equations are not applicable to all cases. For instance, these methods are
not adequate for three-dimensional studies involving magnetic deflections, which is commonly the
case in astroparticle physics. They also come short in the treatment of some stochastic processes
that yield copious amounts of different by-products, such as photodisintegration (see §2.7.3).

Consider a distribution of charged particles of type a with density n(7, t, E). Suppose that other
particles b can, due to some interaction, convert into a. The general form of the transport equation
for particle a is:

a”a(Fx ﬁv t)

T + Faige(F, P, t) + Fine(7, P, t) + Faec(7, P, t) + Feel(F. P, t) + Fpsa(7, P t) = Q(F, P, t)

(127)
where 7 is the position, t is the time, p is the particle’s momentum, and Q is a source term. This
equation describes how a density of particles of type a evolve. The Fyi term describes spatial
diffusion of this ensemble of particles considering a diffusion coefficient D (see §2.5.4.3 for details).
It reads

Faiee(7, p. t) = =V [D(F, t)Vna(F. b, 1)] . (128)

Fint describes changes in the particle density due to spurious interactions:

Fnt(F. 0 0) = D vmioae(E)ne(7, B, t)na(F, B, 1), (129)

t={targets}
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where oine(E) is the total inelastic cross section (see §2.1.2) for particles of type a and energy E,
my is the mass of the target particles, and n; their number density. The term Fye. describes possible

decays of the particles of interest, if they have a finite lifetime, i.e., if 7, < 0o, it reads:
Faec(T, P, 1) = ——na(F, P, t) . (130)

Continuous energy losses are included in the equation through F.., which is given by

- o 0 dE
Fcel(rv p, t) = aiE <'dt

na(7, B, t)) . (131)

The transport equation given by 127 is for particle a exclusively. However, other particles have to be
modelled likewise, which might end up producing particles of type a. This is accounted by Fp_,:

0o
Fonri=— | [a5P2EE) e py e, o)
b={others} | £
The actual equation to be solved is the system of N, equations like this. If nuclei are involved, this
can get increasingly complicated because the system of equations would include all isotopes being
created via, e.g., photodisintegration and spallation.

Note that the term Fyif includes spatial diffusion due to magnetic fields. This makes the problem
more difficult to be treated and is often neglected. However, it may be important even in this one-
dimensional treatment, since it is responsible for accounting for magnetic horizon effects [? ? ?
]

Only in some particular cases can eq. 127 be solved analytically. This is the case of the leaky
box model for GCRs. In the general case some strategies have to be devised. One possibility is to
transform the system of differential equations for all particles, given by eq. 127, into a vector-like

expression of the form:
NF t,E)y=T -N(F.t,E)+Q(F. t E), (133)

where N is
NT == (nal,bl ot na]_,bm e nan,bl ot nan,bm> ' (]‘34)

with the superscript T denoting the transpose of the vector. Note that here a simplification was
made. The phase space was reduced to 7, E, t instead of 7, 7, t.

The matrix [ encapsulates interactions and energy losses, and @ is the source term for each
type of particle. P can be interpreted essentially as a matrix containing rates and informing whether
one particle generated another that should be accounted for in its corresponding (coupled) equation.
The solution can be obtained by computing a grid of energies and rates, as well as combinations of
correlated processes. Each energy bin k has width AEy, 1 = Ex11 — Ex. The equation is solved for
each of these bins. A corresponding distance step (actually time) is also chosen, such that the final
result is the sum over these steps.

The algorithm briefly alluded to above is used, for example, in the PriNCe code [? ? | for
UHECR propagation. Similar idea is employed in the TransportCR code [? ]. A code for high-energy
gamma-ray and electron transport called DINT [? ] also employs a similar idea.
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These methods can only be applied to the one-dimensional case, not being suitable for the more
general three-dimensional with magnetic-field effects when directional dependence is required. That
is when MC methods come in handy.

3.3.2 Monte Carlo methods

Monte Carlo methods refer to a class of algorithms that make use of random numbers to solve a
particular problem. MC simulations make use of sampling to obtain the statistical behaviour of a
system or phenomenon.

MC uses (pseudo-)random numbers. A pseudo-random number generator (PRNG) takes as
input some initial arbitrary value (called seed) and use some algorithm to obtain a seemingly random
distribution of numbers. The use of seeds allow for reproducibility. For details on how this works,
see appendix A.

For particle transport MC methods consist in solving the equations of motion of a particle within
tiny steps including changes in momentum due to, e.g., magnetic deflections, as well as particle in-
teractions. This is done probabilistically, on a particle-by-particle basis. The step size is an important
parameter that determines both the accuracy and the speed of the simulation. Variable step sizes
are desirable if the processes being investigated have a large dynamical range.

This strategy for astroparticle propagation can be split into two parts. The first consists in solving
the equation of motion, without interactions, within a step. In the presence of magnetic fields and
no interactions, this would mean solving eq. 27. The second part is the treatment of interactions.
For continuous energy losses the particle being propagated loses an amount of energy of

dE

AE =|—

A 1
ax | AX (135)

where Ax is the step size. For stochastic processes, common algorithms sample from an exponential
distribution based on the mean free path (\). For instance, a decision on whether the interaction
occurs or not depends on a random number drawn (0 < r < 1). If

Ax > —log(r)A, (136)

then an interaction takes place. Otherwise, it is important to check whether the step is sufficiently
large to resolve the interaction of interest. In case it is too large, then the next step should be
reduced according to some desired tolerance.

If secondaries are produced in an interaction or due to a continuous energy-loss process, they
are sampled from distributions. There are a few MC methods that facilitate that, described in
appendix B. The optimal choice generally requires considerations about convergence speed, which
ensures that the distribution is quickly retrieved for a sample of a given size.

3.3.3 Codes for astroparticle propagation

Several simulation codes exist for the propagation of astroparticles in the universe. Some are
transport-equation solvers, others perform Monte Carlo simulations.

For UHECRs the main codes are listed in table 3.3.3. Note that they all store secondary particles
produced in the interactions, like gamma rays, electrons, and neutrinos, but except for CRPropa they
do not perform the propagation of these particles. That would require external tools.
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Table 2: List of simulation codes for UHECR propagation. The type of treatment of the code, Monte
Carlo (MC) or using transport equations (TE) are indicated.

code dimensions approach references
CRPropa 1D, 3D MC 7?7?7717
SimProp 1D MC 7 ?7]
PriNCe 1D TE 7]
TransportCR 1D TE 7]

There are also codes dedicated to the transport of “lower-energy” CRs, this is, those that are
not UHECRs. These are mainly GCRs, with energies below ~ 100 PeV [? ? |. The propagation of
CRs in environments other than the Galaxy, like galaxy clusters [? ? ? ? |, is also described by the
same underlying theory and similar computational tools could be used. Some of the existing codes
are listed in table 3.3.3.

Table 3: List of simulation codes for GCR propagation. The type of treatment of the code, Monte
Carlo (MC), employing grid-based transport equations (TE), or using stochastic differential equations
(SDE) is indicated.

code approach references
CRPropa SDE 7?7?7717
GALPROP TE 7 ?7]
DRAGON TE ?777]
PICARD TE 7]

Codes for gamma-ray propagation usually treat both gamma rays and electrons. Besides the
approach to solving the transport (Monte Carlo vs. transport equations), these softwares differ in
the energy range at which they operate. Table 3.3.3 present some of them.

Table 4: List of simulation codes for gamma-ray propagation. They also include the treatment of
electron-photon interactions. The type of treatment of the code, Monte Carlo (MC) or transport
equations (TE) is indicated, together with the dimensionality of the treatment (1D or 3D). If the
code is only suitable for UHE (E 2 1 — 10 PeV), this information is also provided.

code dimensions E < Eyne E > Eyne approach references
CRPropa 1D, 3D v v MC 7?77?7177
Elmag 1D, 3D v MC [?77]
DINT 1D v v TE 7]

CEGsi 1D, 3D v MC [?]

EleCa 1D v MC ? ]
y-cascade 1D v TE ? ]

In §4 the CRPropa framework will be described.

4 The CRPropa framework

CRPropa was devised to simulate the propagation of high-energy particles. It was initially conceived
to study UHECRs [? ? ], but thanks to its modular design nowadays it can also perform the
transport of other particles such as electrons, photons, and neutrinos. However, it is still limited to
ultrarelativistic particles, since it approximates velocities by the speed of light.
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Given its widespread adoption by the CR and gamma-ray communities, CRPropa is the tool that
will be taught as part of this course. In §4.1 | provide a technical overview of the code. Sections §4.2,
§4.3, §4.5, and §4.7 describe some of the basic ingredients required to build a simulation. Comments
about the analysis of the outputs at post-processing stage can be found in §4.8, together with some

example simulations in §27.

4.1 Overview

CRPropa 3 [? ? ? ? ] is written in C++. It is a significant leap forward with respect to the previous
version. It interfaces with Python through SWIG 2. This enables users to directly access all of the
code’s functionalities directly from Python, while capitalising on the performance of C++. SWIG
also enables cross-language polymorphism, enabling users to create code extensions in Python that
directly interacts with the core C4++ library.

CRPropa runs in parallel with shared memory using OpenMP!3. This guarantees that some
simulation ingredients like matter and magnetic-field distributions are committed to memory only
once, while different threads split the job of performing the transport of particles. Moreover, only
one instance of each module is loaded, since all modules are stateless.

All particles in CRPropa are passive objects of type Candidate, which are the particles. They
hold information of the physical state of the particle, as well as some other auxiliary information such
as step sizes, and flags referring to the particle state (e.g., isActive). Stateless modules act on
candidates and change their properties at each step of propagation.

The ModuleList is the central engine of CRPropa. It contains the Module objects that effectively
act on the candidates. A loop over the module list, together with successive iterations of the
candidates until a break condition is met, are responsible for the propagation. The internal flag
isActive is responsible for deciding whether a given candidate will be processed by the modules in
the list. An overview of the code structure is presented in fig. 7.

4.2 Sources

Values can be assigned to the particles (or candidates) in two ways. The first is by explicitly setting
all properties such as initial redshift, momentum, energy, particle type, position, etc. The second is
by randomly drawing this values from some distributions, by considering a Source object. Source
encapsulates all relevant details to fully characterise a candidate via a SourceFeature, which can
be added directly to it via the add method.

The type of particle is assigned to the candidate using the features below.

» SourceParticleType: assigns a single type of particle to the candidate.

» SourceMultipleParticleTypes: draw the type of particle from a distribution according to
their relative weights.

The energy distribution can be ascribed to the candidate in various ways, listed below.

» SourceEnergy: attribute the same energy to all candidates.

» SourcePowerLawSpectrum: randomly select the candidate’s energy from a power-law distri-
bution with a given spectral index a, for Eqnin < E < Emax.

12
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Figure 7: Scheme illustrating CRPropa’s modular structure. Each module contained in the module
list acts on a particle (Candidate object). The candidate is propagated while its state is flagged
active, which is controlled by observer and break conditions. These checks are performed at each
cycle of the module list.

SourceComposition: this is the same as SourcePowerLawSpectrum but considering a max-
imum rigidity (Rmax) for the particles, instead of a maximum energy (Emax). It also specifies
the composition and its relative abundance, rendering SourceMultipleParticleTypes and

SourceParticleType redundant.

The spatial distribution of sources is arguably one of the most important aspects of modelling,

given its evident impact on any analysis. Therefore, an extensive list of tools to attribute source

positions to candidates is available, some of which are shown below.

SourcePosition: specifies the position vector (Vector3d) of a source.
SourceMultiplePositions: randomly selects position vectors from a list of positions repre-
senting individual sources, which can have different weights (luminosity).

SourceUniformiD: randomly draws the distance of a source from a uniform distribution and
assigns it to the x-coordinate of the position vector.

SourceUniformSphere: the initial position vector of the candidate is taken from a uniform
distribution within a spherical volume.

SourceUniformShell: position vectors are randomly chosen somewhere on the surface of a
sphere of a given radius.

SourceUniformHollowSphere: the position vectors are chosen uniformly in the volume of

the gap between two spherical shells.
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SourceUniformBox: same as SourceUniformSphere, but considering the volume of a cube
instead of a sphere.

SourceUniformCylinder: same as SourceUniformSphere, but considering the volume of a
cylinder instead of a sphere.

SourceSNRDistribution: the position vector of the candidate is randomly assigned following
the distribution of supernova remnants in the Milky Way, according to ref. [? ].
SourcePulsarDistribution: this provides the spatial distribution of pulsars in the Galaxy
according to ref. [|, with an additional improvement in the radial component owing to ref. [?
|

SourceDensityGrid: randomly draws the source position from a grid in which each cell
describes the relative probability of that region with respect to all the others.
SourceDensityGrid1D: same as SourceDensityGrid, but only the x-coordinate of the po-
sition vectors are attributed to the candidate.

In more advanced simulations like the three-dimensional case, the initial direction of the candidate

has to be carefully selected considering that it determines the arrival directions. A list of available

resources is shown below.

SourceDirection: specify the (normalised) vector describing the direction of motion of a
particle.

SourceIsotropicEmission: the emission direction is randomly chosen assuming equal prob-
abilities in all directions.

SourceEmissionCone: the emission vector is chosen randomly within a given angle around a
reference direction.

SourceDirectedEmission: the emission direction is drawn from a von-Mises—Fisher distri-
bution. This is particularly useful for the targeting method to speed up three-dimensional
simulations, described in ref. [? ].

To specify the redshift of a candidate, several functionalities are available, as described below.

SourceRedshift: a fixed initial redshift is assigned to a candidate.
SourceUniformRedshift: draws the initial redshift from a uniform distribution within a given
interval.

SourceRedshiftEvolution: the redshift of the candidate is randomly chosen from a power-
law distribution within a given redshift interval, according to (14 z)"", wherein m is a constant.

For more details on the treatment of cosmological effects within CRPropa, see 4.6.

4.3

Observers

So far it has become clear that CRPropa can be used as an event generator mimicking astrophysical

sources of high-energy particles. These particles can then be tracked. But how do we mimic a

real-word detection? For that we can use an object of type Observer, which acts as a detector of

sorts. It serves as a geometrical breaking condition that enable some actions to be triggered when

a candidate crosses its boundary (i.e., upon detection). One such action is to store the candidate

information, saving it to a file.
For an Observer, particles can have one of three states: NOTHING, DETECTED, VETO. All candi-
dates are in the former state until an ObserverFeature changes it.

An observer can be omnipresent, detecting all particles everywhere at all times. This is what
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ObserverDetectAll does. However, this is not always practical considering the amount of infor-
mation to be stored, the bulk of which are seldom useful. For this reason, it is often convenient to
define the observer as a spatial object, with a corresponding geometry (e.g., sphere, cube, plane,
etc). This is exactly what ObserverSurface does. It flags as DETECTED a particle that crossed the
surface boundary.

ObserverlD is a specific type of observer suitable for one-dimensional simulations. It detects
particles when they reach x = 0, neglecting the other components of the candidate’s position vector.

In some cases users might want to simply ignore some particles that are actually detected by an
observer. For instance, the study requires information of only photons and not electrons, of neutrinos
and not nuclei. In this case, the state VETO is assigned to candidates that are detected. There are
several types of vetoes to ignore specific types of particles. They can all be added to the same
observer. ObserverNucleusVeto changes the state of detected atomic nuclei to VETO. The same is
done by ObserverNeutrinoVeto, ObserverPhotonVeto, and ObserverElectronVeto. For other
types of particles, ObserverParticleIdVeto vetoes all particles with a specific particle id.

An observer need not be a purely spatial geometrical object. It can also be time-dependent.
This is the case of ObserverRedshiftWindow, which flags as DETECTED candidates that arrive with
redshift between Znin and Zmax, provided by the user.

When the time evolution of a particle density is needed, ObserverTimeEvolution detects can-
didates in arbitrary (linearly or logarithmically spaced, or custom) time intervals. It also limits the
size of the next step to prevent overshooting of the time windows. This is particularly useful for the
propagation of GCRs.

Reaching the observer is a natural breaking condition: once a candidate is detected, there is no
longer a need to keep tracking it. However, sometimes it is useful to keep them active, as in the
case of multiple observers concomitantly acting upon particles in a single simulation. In this case,
the observer has to be instructed to keep the candidate active even after detection. This is achieved
with the method setDeactivateOnDetection(False).

An Observer can dump information of all candidates into a file. This can be done using the
method onDetection(output). Here output is an object indicating the type of output that will
be stored: ShellOutput (print to the shell), TextOutput, HDF50utput. Another possibility is to
use a ParticleCollector, which is a temporary memory buffer that stores particle information for
later internal usage.

4.4 Propagation modules

Four modes of propagation are available in CRPropa.

SimplePropagation is the simplest mode of propagation, suitable for one-dimensional applica-
tions or whenever magnetic deflections can be ignored. At each step k of size Axy, it does computes
Fk+1 = Tk+Axkp, where 7 is the position vector at the k-th step, and p is the normalised momentum.

Whenever one requires to resolve trajectories subject to a Lorentz force, PropagationCK is a suit-
able option. This three-dimensional propagation implements an adaptative Runge-Kutta algorithm,
described in §3.2.1, with Cash-Karp coefficients [? ].

A new feature implemented in CRPropa 3.2 [? ] is the Boris push algorithm, already described
in §3.2.2 through the PropagationBP module. This is currently the recommend algorithm recom-
mended by the CRPropa Developers.
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4.5 Break conditions

Break conditions are an essential part of the algorithm, constituting the stopping criterion for the
simulation. In their absence, the simulation would go on indefinitely. The state of a candidate is
changed from active to inactive when it meets a break condition.

A candidate will no longer be tracked by the code if at least one of these conditions are met:

» MaximumTrajectoryLength: the trajectory length described by this particle is too large;

» MinimumEnergy: the candidate's energy dropped below a given threshold;

» MinimumRigidity: its rigidity dropped below a given threshold;

» MinimumRedshift: the redshift of the candidate is smaller than a threshold value;

» MinimumChargeNumber: the candidate has a charge!* smaller than a given value.

The list above is not exhaustive. For more details, see CRPropa’s documentation.

4.6 Cosmology

CRPropa implements the usual concordance Acold dark matter (CDM) cosmological model. The
default cosmological parameters inferred by the Planck satellite [? |, but this can be changed by the
user.

Internally, the code treats distances as comoving, by default. To enable fast conversion between
distance measures (e.g., comoving, light-travel, luminosity), simple interpolations are performed for
values in the range 10~% < z < 100, spaced logarithmically.

In CRPropa, redshift (z) is used as a measure of time through equation 106. This quantity can
be optionally used for various purposes. It can be attribute to a candidate by using the corresponding
source features.

Because redshift is a measure of time, as opposed to distance, a source at a given distance D
will only have a redshift z that corresponds to this distance, following eq. 106, if the simulation is
one-dimensional and time delays incurred by magnetic fields are absent.

Adiabatic energy losses due to the expansion of the universe are implemented in the Redshift
module. Note that the notion of negative redshift is allowed within the code through FutureRedshift,
making it possible to treat z < 0. Physically this would translate into a future observation of the

particle.

4.7 Particle interactions and decays

The interaction modules implement physical interactions between particles. They decide whether
the kinematic state of a particle changes at a given time, and can also produce secondary particles.
Two types of algorithms are employed, depending on the interaction. Some processes are described
in the continuous energy-loss approximation ( §3.3.1) for performance reasons, whereas for others a
full Monte Carlo approach is used, as described in §3.3.2.

Interaction processes in CRPropa rely on pre-computed interaction rate tables. The scripts for
their calculation can be seen in the CRPropa3-data repository'®. These tables are automatically
download when CRPropa is installed.

Stochastic interactions modelled through a Monte Carlo approach are treated as follows. At each

step the interaction rate, or conversely the interaction length (), for a candidate of energy E is read

1% Actually, it is not the charge but the atomic number of a cosmic ray.
Bhttps://github.com/CRPropa/CRPropa3-data
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from the look-up tables. The probability that the particle will not undergo an interaction is decided,
following the description from §3.3.2.

One important aspect of the interaction modules is that the modules limit the size of the next
propagation step to ensure that the process is properly resolved in space. This means that wherever
interaction rates are larger, step sizes are smaller. The user can choose the tolerance above which
the size of the next step will be limited. The default value is 10% for the ratio between the current
step size and the interaction length. For the continuous energy-loss processes, the energy loss is
simply AE = dE/dxAx, where dE/dx is theoretically known, and Ax is the step size. Similarly to
the stochastic processes, the next step is also limited according to the same criteria.

CRPropa contains a list of pre-implemented interactions. They are generally sufficient to describe
the propagation of UHECRSs, gamma rays, and electrons over cosmological distances. Extragalactic
background radiation fields from the CMB, EBL, and CRB are implemented by default (see §2.4.1).
Custom isotropic radiation fields can also be implemented by the user. The interactions currently
implemented are shown in figure 8.

neutrinos
pair
photopion production
production
Bethe-
Heitler pair
production photons
double pair
production
photo-
disintegratior
processes
inverse
nuclear electrons Compton
— scattering
elastic
: synchrotron

scattering , .

triplet pair

production

synchrotron

Figure 8: Diagram describing the interactions and energy-loss processes implemented in CRPropa,
for different types of particles. Figure taken from ref. [? |].

Below the implemented interactions are described. The underlying details of these processes are
described in §2, from a theoretical viewpoint.
4.7.1 Photopion production

The production of mesons due to photonuclear interactions is described in §2.7.2. The most impor-
tant of these processes for most applications is photopion production.
CRPropa uses the SOPHIA [? ? | event generator to model the interaction between nucleons
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(protons and neutrons) and photons. The cross section for this is shown in fig. 6. In the case of
nuclei, the mean free path is approximated as a superposition of those for protons (A,) and for

neutrons (Ap):
MNE)~1.18|Z2 (= ) + N+ — - 137
( )N . p A n A ' ( )

where N = A— Z is the number of neutrons in the nucleus, and a = 2/3 if A < 8 or a = 1 otherwise.
This approximation neglects the Fermi motion within the nucleus. It also does not take into account
possible spectral changes in the resonances. However, it leads to errors smaller than ~ 20% for
UHECR propagation [? |.

4.7.2 Bethe-Heitler pair production

This process, described in §2.7.1, is implemented in the continuous energy-loss approximation. For

nuclei, the energy-loss length is scaled with respect to that of protons:
1dE Z? [1dE
- = == === . (138)
Edx]ax A [Edx],
V4

4.7.3 Photodisintegration

The first versions of CRPropa [? | prior to 1.3 did not allow for the propagation of nuclei. This was
implemented later [? ? |, and released with CRPropa 2 [? ]. The underlying theory is described in
§2.7.3.

Cross sections for this process are taken from multiple sources. For nuclei with A < 12, the
sources and details are listed in table 5.

Table 5: References for the photodisintegration cross sections for nuclei with A < 12. Table adapted
from ref. [? ].

nucleus reference details

°H [?]

3H [?] rescaled by factor 1.7

3He 7] rescaled by factor 0.66

*H [?]

Li [? 7] interpolation of measured data
8Li 7] loss of neutron

ILi 7] loss of neutron

"Be 7] loss of proton

‘Be ?77] parametrization from [? |, refitted with data from [? ]
10Be [?] loss of neutron

11Be [?] loss of neutron

8B 7] loss of proton

108 7] loss of neutron and proton
1B 7] loss of neutron

o°C ? ] loss of proton

10C 7] loss of proton

e 7] loss of proton

For A > 12, photonuclear cross sections are retrieved from the TALYS code [? 72 ? ? |, in
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particular version 1.8 (for CRPropa 3.2).

Based on the individual exclusive cross sections computed, it is possible to obtain the number of
channels for each nucleus-photon interaction and the total cross sections. To reduce the number of
channels and therefore the memory requirements of the code, only channels that contribute with at

least 1% to the total cross section are considered; the others are discarded.

4.7.4 Nuclear decay

Nuclear decay modules in CRPropa include alpha, beta, and gamma decays, as well as neutron and
proton dripping (see §2.6).

In CRPropa the treatment of nuclear decays is based on tabulated values obtained from the
NuDat 2.6 database [? ? |, which provides data for nuclear lifetimes as well as number of decay

channels.

4.7.5 Elastic scattering

Being an important channel for the production of photons, elastic scattering (see §2.7.4) has been
recently incorporated into CRPropa [? ? ] and released with CRPropa 3.2 [? ]. A more detailed
theoretical description of this process is given in §2.7.4.

The cross sections for this process are also extracted from the TALYS code, like those for photo-
disintegration. It would be computationally expensive to build and load tables relating the outgoing
photon energy to the primary nucleus energy for all photon backgrounds. Therefore, to reduce mem-
ory consumption the average cross section for all isotopes of a given element is computed and scaled
by a factor Z(A — 2)/A.

The energy of the background photon scattered by the nucleus has a probability distribution
function (PDF) given by [? |:
dA71 (v, €)

de’ '

where 7y is the Lorentz factor of the nucleus and €’ is the energy of the photon in the nucleus rest

plr.e') = (139)

frame. The cumulative distribution function (CDF) obtained from this PDF is provided as look-
up table, and by using inversion sampling the energy of the up-scattered photon can be retrieved,

followed by a Lorentz boost to transform it back to the laboratory frame.

4.7.6 Electromagnetic interactions

Electromagnetic processes of the type X +ypg, where X = {vy, e*, e~} are implemented in CRPropa
in a similar way. They are:

= Breit-Wheeler pair production (see §2.9.1);

= inverse Compton scattering (see §2.9.2);

= double pair production (see §2.9.3);

triplet pair production (see §2.9.4).
All of these load interaction rate tables for each background photon field to determine whether the
interaction will happen.

The energies of the particles produced are interpolated from look-up tables containing tabulated
the PDF corresponding to the differential interaction rates. This allows for the sampling of the energy
fractions taken by each of the final particles.
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Starting off with a (high-energy) photon, successive pair production and inverse Compton inter-
actions create an electromagnetic cascade. For each pair production, two particles are created, one
electron and one positron. Therefore, the total number of particles would increase as N wherein N
is the number of interactions taking place. For this reason, a thinning procedure was implemented,
inspired by ref. [? ].

Suppose a secondary particle produced through these processes carries a fraction y of the energy
of the primary. The thinning algorithm draws a random number (r) and decides whether or not
to accept this particle. For a thinning parameter m, with n € [0, 1], if r < (1 — y)7, the particle
continues to be tracked; otherwise it is inactivated. For 7 = O there is no thinning, whereas for n =1
this weighted sampling is maximum. If the particle is accepted, its weighted is updated by a factor
y~ . Note that these weights should be taken into account in the post-processing (see §4.8) of the
simulations. 7 should be chosen according to the problem at hand, to maximise both performance

and accuracy for a finite-sized sample.

4.7.7 Synchrotron emission

The energy-loss length for synchrotron emission is described in §2.11.1 through eq. 99. In CRPropa
this is implemented as a continuous energy-loss process. At each step, the magnetic field (§) is
evaluated at its centre. After propagating a small distance Ax corresponding to the step size, at the
end of the step the charged particle will have lost an amount of energy AE = |dE /dx|Ax.

The synchrotron radiation emitted has to add up to the total energy budget available, AE. Its
spectrum is given in §2.11.1, considering the asymptotic limit, wherein F(y) > G(y) (see egs. 101
and 102).

While CRPropa can treat this process, if individual synchrotron photons are added and later
propagated, memory overflows are expected due to the copious amounts of these particles produced

at each step.

4.8 Postprocessing the simulations
A Random number generators

Pseudo-random number generators (PRNGs) are a class of algorithms for generating a sequence of
numbers that, collectively, resemble a sequence of random numbers. They started to be required for
computational applications in the late 1940s [? ].

Sequences generated by PRNGs are not truly random. The seed, which is the initial value
provided, completely determines the whole sequence of numbers. This sequence starts to repeat
itself after a given period, which depends on the details of the PRNG algorithm being employed.
Therefore, PRNGs are deterministic, in the sense that for a fixed seed the same sequence of numbers
can be generated, and periodic, which means that the sequence will eventually repeat itself.

In §A.1 one of the arguably simplest PRNG is presented. §A.2 describes a widely use algorithm,
the Mersenne Twister.

A.1 Linear congruential generator

The linear congruential generator (LCG) is one of the simplest PRNG algorithms available. The k-th
number of the sequence (xx) is generated based on the previous ones, considering the initial value
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Xo (the seed). They are defined through the recurrence relation
Xk+1 = (axx +b) mod m, (140)

where a (0 < a < m) is the multiplier, b (0 < b < m) is the increment, and m (m > 0) is the
modulus, which is the remainder of a division between any two numbers.

The first LCG was a multiplicative congruential generator, with b = 0 in eq. 140 [? ]. The more
general form expressed by this equation was published a few years thereafter [? ? |.

A.2 Mersenne twister

Mersenne twister (MT) is a well-known algorithm for generating (pseudo-)random numbers [? |.
Historically, it was motivated due to the limitations of earlier PRNGs.

MT is a fast generator with period chosen to be a Mersenne prime, of the form 2V — 1. In the
most common implementation, MT19937, N = 19937, for a 32-bit word length. There are also
64-bit versions.

This algorithm is excessively complex to be briefly summarised here. The interest readers are

referred to

B Monte Carlo sampling methods

Inversion sampling is arguably the simplest algorithm. For a distribution (f(x)) corresponding to
the PDF of a function, it is straightforward to compute the CDF (F(x)). Then a random number
(r) is generated. Since both F(x) and r have the same domain, a sample of x can be obtained:
x = F~1(r). The main disadvantage of this method is that very few distributions possess CDF
whose inverse can be easily and efficiently evaluated.

Another commonly used method is rejection sampling. It relies on creating a proposal function
g(x). A pair of random number (ry, rg) is uniformly drawn for a given range of interest. A sampled
value of x is accepted if ry < f(ry). Depending on the shape of the proposal function g(x), this can
lead to long computational times.

Importance sampling is a generally more robust sampling strategy. It relies on reweighting the
desired distribution f(x) with a given function w(x), as follows:

f(x)dx = @W(X)dx. (141)

w(x)

This means that a sample is drawn from a proposal distribution and reweighted to attribute higher

weights to values that are more typical, but using a function that is easier to sample.

47



	Introduction
	The theory of particle propagation
	Basic concepts
	Particle fluxes
	Cross sections

	Interaction lengths
	Kinematics of two-body interactions
	Targets for interactions
	Cosmological radiation fields
	Cosmic microwave background (CMB)
	Extragalactic background light (EBL)
	Cosmic radio background (CRB)


	Magnetic fields
	Characterisation of stochastic magnetic fields
	Intergalactic magnetic fields
	Galactic magnetic fields
	Propagation of charged particles
	A homogenous magnetic field
	A homogenous magnetic field with a perturbation
	Ensemble propagation


	Particle decays
	Nuclear decays

	Photonuclear interactions
	Bethe-Heitler pair production
	Photomeson production
	Photodisintegration
	Photonuclear elastic scattering

	Hadronuclear interactions
	Proton-proton interactions
	Nucleus-nucleus interactions

	Electromagnetic interactions
	Pair production
	Inverse Compton scattering
	Double pair production
	Triplet production

	Particle mixing
	Neutrino oscillations

	Other energy loss processes
	Synchrotron cooling
	Adiabatic cosmological losses


	Building propagation models
	Prescriptions for generating turbulent magnetic fields
	Particle trajectories in the presence of magnetic fields
	Runge-Kutta algorithm
	Boris push algorithm
	Solving the Fokker-Planck transport equation

	Modelling the transport of astroparticles
	Transport equations
	Monte Carlo methods
	Codes for astroparticle propagation


	The CRPropa framework
	Overview
	Sources
	Observers
	Propagation modules
	Break conditions
	Cosmology
	Particle interactions and decays
	Photopion production
	Bethe-Heitler pair production
	Photodisintegration
	Nuclear decay
	Elastic scattering
	Electromagnetic interactions
	Synchrotron emission

	Postprocessing the simulations

	Random number generators
	Linear congruential generator
	Mersenne twister

	Monte Carlo sampling methods

